March 9-20
Instructor: Brian Powers

16.1 Random Sampling

Definition 16.1. A random variable X which can take any real number value from a population.
Definition 16.2. A sample is a subset of a population A sampling procedure which produces inferences that consistently over or underestimate some characteristic of the population are said to be biased. A random sample is chosen so that the observations are independent and at random. A random sample of size n is

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

with numerical values $x_{1}, x_{2}, \ldots, x_{n}$. Random variables in a random sample are said to be independent and identically distributed (iid).

16.2 Some Important Statistics

An estimate of a population parameter is given the hat as an identifier. For example, the estimate of a population proportion p is \hat{p}, read " p hat".

Definition 16.3. any function of the random variables from a random sample is a statistics Recall the following sample statistics of the location

Definition 16.4. The sample mean \bar{X} is

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

Definition 16.5. The sample median is

$$
\tilde{x}= \begin{cases}x_{(n+1) / 2} & \text { if } n \text { is odd } \\ \frac{1}{2}\left(x_{n / 2}+x_{n / 2+1}\right) & \text { if } n \text { is even }\end{cases}
$$

Definition 16.6. The sample mode is the value of the sample which occurs most often.
Definition 16.7. The sample variance S^{2} is

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Definition 16.8. The sample standard deviation is $S=\sqrt{S^{2}}$.
Definition 16.9. The sample range is $X_{\max }-X_{\min }$.

16.3 Sampling Distributions

Given a random sample of size n from a population with mean μ and variance σ^{2}, what is the mean and variance of \bar{X} ?

$$
\begin{gathered}
E(\bar{X})=E\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right)=\frac{1}{n}\left(E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right)=\frac{1}{n} n E\left(X_{1}\right)=\mu \\
\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)\right)=\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right)=\frac{1}{n^{2}} n \operatorname{Var}\left(X_{1}\right)=\frac{\sigma^{2}}{n}
\end{gathered}
$$

Definition 16.10. The probability distribution of a statistic is a sampling distribution.

16.3.1 Properties of Some Distributions

Theorem 16.11. If X_{1}, \ldots, X_{n} are independent, and $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
\sum_{i=1}^{n} X_{i} \sim N\left(\sum \mu_{i}, \sum \sigma_{i}^{2}\right)
$$

Theorem 16.12. If X_{1}, \ldots, X_{n} are independent, and $X_{i} \sim \operatorname{Gamma}\left(\alpha_{i}, \beta\right)$, then

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}\left(\sum \alpha_{i}, \beta\right)
$$

Corollary 16.13. If $X_{1}, \ldots, X_{n} \sim \operatorname{Exp}(\beta)$ are iid, then

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \beta)
$$

16.3.2 The Central Limit Theorem

Theorem 16.14. Central Limit Theorem: If \bar{X} is the sample mean of a sample of size n, from a population with mean μ and variance σ^{2}, then

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

follows a standard normal distribution as $n \rightarrow \infty$.
Example 16.15. At a pencil company the machines are supposed to produce pencils of average length 20 cm . The pencils have a standard deviation $\sigma^{2}=.2 \mathrm{~cm}$. A random sample of 100 pencils is found to have a mean length of 20.13 cm . Is there reason to believe that the machines are not calibrated correctly?

Example 16.16. A punk band's songs are on average $1: 44$ with a standard deviation of 10 seconds. If you make a random mix of 40 of their songs, what is the probability it will last longer than 75 minutes?

16.3.3 Difference of Sample Means

Corollary 16.17. If independent random samples of sizes n_{1} and n_{2} are drawn from two populations with respective means μ_{1}, μ_{2} and variances $\sigma_{1}^{2}, \sigma_{2}^{2}$, the difference of the sample means $\bar{X}_{1}-\bar{X}_{2}$ is approximately normal (moreso as $n_{i} \rightarrow \infty$) with

$$
\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}, \quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

so

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}
$$

16.3.4 Sampling Distribution of S^{2}

Recall that

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}(X-\bar{X})^{2}
$$

By Adding and subtracting \bar{X}, we can write

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} & =\sum_{i=1}^{n}\left[\left(X_{i}-\bar{X}\right)+(\bar{X}-\mu)\right]^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n}(\bar{X}-\mu)^{2}+2(\bar{X}-\mu) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \\
& =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+n(\bar{X}-\mu)^{2}
\end{aligned}
$$

We substitute $(n-1) S^{2}=\sum\left(X_{i}-\bar{X}\right)$ and divide both sides by σ^{2}.

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}+\frac{(\bar{X}-\mu)^{2}}{\sigma^{2} / n}
$$

Left hand side follows a Chi-Squared distribution with n degrees of freedom. The second term on the right is Z^{2} which is Chi-Squared with 1 degree of freedom. It takes a little more theory than this course contains, but we get the following conclusion:

Theorem 16.18. Given X_{1}, \ldots, X_{n} iid from a Normal population with variance σ^{2},

$$
\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

follows a Chi-Squared distribution with $n-1$ degrees of freedom.
Example 16.19. Car batteries have a lifetime that is normally distributed, with a supposed standard deviation of 1 year. If 5 batteries are sampled with lifetimes of $1.9,2.4,3,3.5$ and 4.2 years, should we suspect that the standard deviation has changed?

16.4 t-Distribution

Often the population variance is unknown, so it is natural to use S^{2} as an estimate. So we use

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

But for small samples, the value of S may vary quite a bit from sample to sample. This statistic follows what is known as a t-distribution.

Theorem 16.20. If X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$, then

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

follows a t-distribution with $v=n-1$ degrees of freedom.
Even when the population is not normal, if it is approximately normal (bell shaped, symmetric) then the distribution will be approximately a t-distribution.

