
Stat 381: Applied Statistical Methods I Spring 2015

April 3-10
Instructor: Brian Powers

17.1 Statistical Inference and Classical Estimation

Definition 17.1. A point estimate of a population parameter θ is a single value θ̂ of a statistic Θ̂.

Example 17.2. The value x̄ of X̄ is a point estimate of population mean µ. p̂ is a point estimate of the
true proportion p for a bernoulli or binomial experiment.

Some properties make a “good” estimator. One is that on average the estimator is correct, this is called
unbiasedness.

Definition 17.3. A statistic Θ̂ is said to be an unbiased estimator of the parameter θ if

E(Θ̂) = θ.

Example 17.4. Show S2 is an unbiased estimator of σ2.

If Θ̂1 and Θ̂2 are to unbiased estimators for θ the “better” one is the one with the smaller variance. We refer
to this as being more efficient.

Definition 17.5. If we consider all possible unbiased estimators of some parameter θ, the one with the
smallest variance is called the most efficient estimator of θ.

Example 17.6. Take a sample of X1, . . . , Xn from a normal distribution with variance 25 and unknown
mean. X1, X1+X2

2 and X̄ are all unbiased but X̄ is the most efficient.

Another property desirable in an estimator is that of “consistency.” Without being too technical, we say
that an estimator is consistent if as the sample size increases, the estimator converges, in some sense, to
the parameter θ.

17.2 Confidence Intervals for µ

Let us assume that σ is known and that the sample size is large enough for us to approximate the sampling
distribution of X̄ by a Normal distribution, ala the Central Limit Theorem. Suppose we want to create
an interval which we are fairly confident contains the population mean. Typically we denote our desired
confidence level as 100(1−α)%. To achieve this, we want the upper and lower bounds of the interval to trap
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α/2 in each tail. We denote the z-values which do this as −zα/2 and zα/2. So we have

P (−zα/2 < Z < zα/2) = 1− α

P

(
−zα/2 <

X̄ − µ
σ/
√
n
< zα/2

)
= 1− α

P

(
−zα/2

σ√
n
< X̄ − µ < zα/2

σ√
n

)
= 1− α

P

(
X̄ − zα/2

σ√
n
< µ < X̄ + zα/2

σ√
n

)
= 1− α

Of course, this requires that σ, the population standard deviation is known. Furthermore, we should be
careful how we interpret this probability. The population mean µ is fixed but unknown, we we cannot say
“The probability that µ takes a value between this and that is 1− α.” The random variable is X̄. We must
say “The probability that the interval from this to that contains µ is 1− α.”

Example 17.7. Say we want to give a 92% confidence interval for the weight of frogs in a certain pond.
We get a random sampling of 65 frogs and calculate the sample mean weight x̄ = 22 oz. Assuming we know
the population distribution is symmetric with σ = 5 oz., the 92% confidence interval is as follows:
First a quick lookup or calculation gives us z.04 = 1.751. So the bounds of the confidence interval are

22± (1.751)
5√
65
≈ 22± 1.086.

We can be 92% confident that the interval (20.914, 23.1086) contains the population mean.

17.3 Fixing the Margin of Error

The expression zα/2
σ√
n

is called the margin of error for a symmetric confidence interval as this. If we have

control over the sample size and a specific margin of error as our target, we can find the minimum sample
size needed to ensure our confidence level.

Say we want our margin of error to be no larger than ε. This is to say

zα/2
σ√
n
≤ ε.

By solving for n, we get (zα/2σ
ε

)2
≤ n.

We notice that in order to halve our margin of error, we must quadruple the sample size.

Example 17.8. Suppose we want the margin of error for the frog estimation to be .5 oz. How big must the
sample size be?
We can just use this formula.

n ≥
(

1.751 · 5
.5

)2

= 306.6

so we would need a sample size of 307 frogs to achieve this.
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17.4 One-Sided Confidence Bounds

We may wish to simply find a lower bound on µ with a certain level of confidence. The procedure is similar,
except we will use zα instead of zα/2.

Example 17.9. Suppose the lifespan of transistors follows a normal distribution with unknown µ and σ = 3
years. A 25 random transistors are sampled and their average lifespan is 6.2 years. We want a lower bound
on mean lifespan for which we are 95% confident.
For this we find −z.05 = −1.645. The lower bound on this confidence interval is

x̄− z.05
σ√
n

= 6.2− 1.645

(
3√
25

)
= 5.213 years.

17.5 When σ is Unknown

It is much more likely that the population standard deviation is unknown to us. Since we have collected a
sample, though, we may naturally wish to use s, the sample standard deviation as a surrogate. How does
this change the sampling distribution of X̄? If an i.i.d. sample is drawn from a normal distribution,

T =
X̄ − µ
s/
√
n

will follow a Student’s t-distribution with n − 1 degrees of freedom. We can now set up the confidence
interval in a similar way. We will get

P

(
X̄ − tα/2

s√
n
< µ < X̄ + tα/2

s√
n

)
= 1− α

In practice, as long as the population distribution is approximately bell-shaped we can use this to get very
good confidence intervals.

Most textbooks will argue that when the sample size is at least 30 and the population distribution is not too
skewed, the Central Limit Theorem will ensure that the sampling distribution of X̄ is approximately normal
and we can forget about using a t-distribution. This is more justifiable as the sample size gets quite large,
as “not too skewed” is not well-defined.

17.6 Standard Errors of Point Estimates

The standard error of a point estimate is the standard deviation of its sampling distribution. If σ is known,

s.e.(x̄) =
σ√
n

and when σ is unknown, the estimated standard error is

s.e.(x̄) =
s√
n
.
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17.7 Estimating the Difference between Two population Means
(Independent Samples)

From earlier, we know that if independent samples of sizes n1 and n2 are drawn from two populations with
respective means µ1, µ2 and σ1, σ2, we can easily calculate the confidence interval. A 100(1−α)% confidence
interval for µ1 − µ2 is

(x̄1 − x̄2)± zα/2

√
σ2
1

n1
+
σ2
2

n2

If variances are unknown but equal, the standard error would be

σ

√
1

n1
+

1

n2

And the best estimate for σ would be based on pooling the data from both samples,

S2
pooled =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

But rather than using the normal distribution, we have to utilize a t-distribution with n − 2 degrees of
freedom.

(x̄1 − x̄2)± tα/2sp
√

1

n1
+

1

n2

When variances are unknown and assumed unequal, we have a complicated formula for v, the degrees
of freedom for the t-distribution.

v =
(s21/n1 + s22/n2)2

[(s21/n1)2/(n1 − 1)] + [(s22/n2)2/(n2 − 1)]

In practice, you should round down to the nearest integer.

(x̄1 − x̄2)± tα/2

√
s21
n1

+
s22
n2

17.8 Paired Observations

When there is a good reason to pair observations from two samples (such as before/after observations, without
drug treatment/with drug treatment, husband/wife from couples), and we are interested in the difference in
population means, we actually calculate the difference of each pair, and we treat the differences as a single
population sample (where known/unknown variance is handled as before). Basically, the confidence interval
is

d̄± tα/2
sd√
n

where d̄ = d1 + d2 + · · ·+ dn is the average of the paired differences, and sd is the standard deviation of the
paired differences. The t-distribution has n− 1 degrees of freedom.
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17.9 Confidence Intervals for Population Proportion

Suppose we instead are looking at finding a confidence interval for a population proportion p. We begin
by taking a sample proportion p̂, which will serve as the point estimate. The sampling distribution of the
statistic P̂ = X/n can be calculated, where X follows Binom(n,p).

E(P̂ ) = E(X/n) =
1

n
E(X) =

1

n
np = p

V ar(P̂ ) = V ar(X/n) =
1

n2
V ar(X) =

1

n2
npq =

pq

n

And the central limit theorem tells us that as n→∞,

P̂ − p√
pq/n

→ N(0, 1)

In practice, of course, the variance is not known - if it was we would already know p. As long as p is not
close to 0 or 1, p̂ may be used in its place, giving

P̂ − p√
p̂q̂/n

→ N(0, 1)

As before, the sampling distribution leads us to a 100(1− α)% confidence interval.

P (−zα/2 <
P̂ − p√
p̂q̂/n

< zα/2) = 1− α

P

(
−zα/2

√
p̂q̂

n
< P̂ − p < zα/2

√
p̂q̂

n

)
= 1− α

P

(
P̂ − zα/2

√
p̂q̂

n
< p < P̂ + zα/2

√
p̂q̂

n

)
= 1− α

Example 17.10. A candidate’s campaign staff conducts a random poll of 400 voters and finds that 250 of
them plan to vote for her. Based on a 95% confidence interval, should she expect to win the election?

p̂ = 250/400 = .625, and z.025 = 1.96. Plugging into the formula, the bounds of the confidence interval will
be

.625± 1.96

√
(.625)(.375)

400
= .625± .047

17.10 Determining sample size for fixed margin of error

As with the population mean, we may have a target margin of error, that is to say some ε for which we need

zα/2

√
p̂q̂

n
≤ ε

Solving for n we get

n ≥
z2α/2p̂q̂

ε2
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But there is an obvious problem. If we have not yet determined the sample size, how could we have a
sample proportion? There are two solutions. First we could do a small preliminary sample and use this p̂ to
determine the sample size for the full sample. You may argue that this estimate may be off and we should
construct a confidence interval for it... seems quite convoluted. The other solution is to use a worst case
scenario for p̂q̂. By this we mean that

p̂q̂ = p̂(1− p̂) = p̂− p̂2 ≤ 1

4

So plugging this value into the formula we get

n ≥
z2α/2

4ε2

Example 17.11. Suppose another candidate wants to conduct a poll and estimate the proportion of voters
who support him with a margin of error of 1 percentage point at 99% confidence. The formula above says
that he will need to survey at least

2.5762

4(.01)2
= 16589.44

So at least 16,590 people!

17.11 Difference of two population proportions

If samples of sizes n1 and n2 are drawn from two populations giving estimates p̂1 and p̂2 of the two respective
population proportions, and we want to give an interval estimate for the difference p1 − p2, we proceed
similarly as with the 2-independent sample interval for µ. The standard error of (p̂1 − p̂2) is√

p̂1q̂1
n1

+
p̂2q̂2
n2

So a 100(1− α)% confidence interval for p1 − p2 is

(p̂1 − p̂2)± zα/2
√
p̂1q̂1
n1

+
p̂2q̂2
n2

17.12 Estimating the Variance

As you may assume, we use S2, the sample variance as a point estimate of σ2 usually, since S2 is unbiased,
consistent and is efficient. But recall that the statistic

X2 =
(n− 1)S2

σ2

follows a chi-squared distribution with n− 1 degrees of freedom, when the samples are drawn independently
from a normal population (and this is still approximately true when the population is not normal. We can
construct the form of the confidence interval as we did for µ. We start with:

P

(
χ2
1−α/2 <

(n− 1)S2

σ2
< χ2

α/2

)
= 1− α



Lecture 17: April 3-10 17-7

Divide each side by (n− 1)S2 and taking a reciprocal we get

P

(
(n− 1)S2

χ2
α/2

< σ2 <
(n− 1)S2

χ2
1−α/2

)
= 1− α

Where χ2
α/2 leaves a probability of α/2 to the right in a Chi-squared distribution with v = n − 1 degrees

of freedom. You can express the confidence interval for σ by taking the square root of the upper and lower
bounds.

Example 17.12. We sample 10 packages of grass seed, measuring the weights. We get

46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and46.0

Find a 95% confidence interval for σ2


