Exam 1

NAME:
For full credit you must show your work.

1. (10 points) If $P(B)=0.4, P(A \cup B)=0.6$ and $P(A \mid B)=0.5$, are A and B independent, mutually exclusive or neither? Justify.
$P(A \mid B)=P(A \cap B) / P(B) \Rightarrow .5=P(A \cap B) / .4 \Rightarrow P(A \cap B)=.2$, so A and B are not mutually exclusive.
$P(A \cup B)=P(A)+P(B)-P(A \cap B) \Rightarrow .6=P(A)+.4-.2 \Rightarrow P(A)=.4 \neq P(A \mid B)$ so A and B are not independent.
(or)
$P(A) P(B)=(.4)(.4)=.16 \neq P(A \cap B)$
(or)
$P(B \mid A)=P(B \cap A) / P(A)=.2 / .4=.5 \neq P(B)$
+5 points for correctly stating and justifying that they are not mutually exclusive +5 points for correctly stating and justifying that they are not independent
2. (10 points) Laptops made from factories A, B and C are defective with respective probabilities $0.01,0.02$ and 0.05 . Factory A produces 70% of the laptops, factory B produces 20% and factory C produces the remaining 10%. If a consumer gets a defective laptop, what is the probability it came from factory C ?
$P(D \mid A)=.01, P(D \mid B)=.02, P(D \mid C)=.05, P(A)=.7, P(B)=.2, P(C)=.1$
By Bayes' Rule:

$$
\begin{aligned}
P(C \mid D) & =\frac{P(C) P(D \mid C)}{P(A) P(D \mid A)+P(B) P(D \mid B)+P(C) P(D \mid C)} \\
& =\frac{(.1)(.05)}{(.7)(.01)+(.2)(.02)+(.1)(.05)} \\
& =\frac{.005}{.007+.004+.005} \\
& =\frac{5}{16}
\end{aligned}
$$

+3 points - correctly interpret and name the probabilities from the problem
+3 points - set up the formula correctly
+4 points - calculate the final answer
-2 points for each arithmetic error
OR if setting up a tree diagram:
+3 for a correct tree diagram (The final probabilities for $P\left(D^{\prime} \cap A\right), B$ or C are not required)
+3 for setting up the conditional probability formula
+4 for correctly calculating final answer
-2 points for each arithmetic mistake.
3. You flip a coin. If heads you then roll a 4 -sided die, otherwise you roll a 6 -sided die. Let R be the number you roll.
(a) (10 points) Find the pmf of R

r	$f(r)$
1	$P(1)=.5\left(\frac{1}{4}\right)+.5\left(\frac{1}{6}\right)=\frac{5}{24} \approx .2083$
2	$P(2)=.5\left(\frac{1}{4}\right)+.5\left(\frac{1}{6}\right)=\frac{5}{24} \approx .2083$
3	$P(3)=.5\left(\frac{1}{4}\right)+.5\left(\frac{1}{6}\right)=\frac{5}{24} \approx .2083$
4	$P(4)=.5\left(\frac{1}{4}\right)+.5\left(\frac{1}{6}\right)=\frac{5}{24} \approx .2083$
5	$P(5)=.5\left(\frac{1}{6}\right)=\frac{2}{24} \approx .0833$
6	$P(6)=.5\left(\frac{1}{6}\right)=\frac{2}{24} \approx .0833$

10 points (fractions or decimals to 4 digits are fine).
-2 for each arithmetic error.
(b) (10 points) find $P(R>3)$.

$$
\begin{aligned}
P(R>3) & =P(R=4 \cup R=5 \cup R=6) \\
& =f(4)+f(5)+f(6) \\
& =\frac{5}{24}+\frac{2}{24}+\frac{2}{24} \\
& =\frac{9}{24} \\
& =\frac{3}{8} \\
& =.375
\end{aligned}
$$

3 points only If they find $P(R \geq 3)$ instead
3 points only if they find $P(R=3)$ instead.
-2 points for arithmetic error.
4. (10 points) Find the constant c for the following cdf of X.

$$
F(x)= \begin{cases}0 & x<0 \\ c \sqrt{x} & 0 \leq x \leq 5 \\ 1 & 5<x\end{cases}
$$

Because the function $F(x)$ must be right-continuous at $x=5$ we need $F(5)=1$, so

$$
c \sqrt{5}=1
$$

thus $c=1 / \sqrt{5}$.
10 points if they get this right.
5 points only if they say that c can take any value in $[0,1 / \sqrt{5}]$.
5. The pdf of Y is given by

$$
f(y)= \begin{cases}\frac{1}{2} \sin y & 0<y<\pi \\ 0 & \text { elsewhere }\end{cases}
$$

(a) (10 points) Find the cdf $F(y)$.

For $0 \leq y \leq \pi$,

$$
F(y)=\frac{1}{2} \int_{0}^{y} \sin t d t=\frac{1}{2}[-\cos t]_{0}^{y}=\frac{1}{2}(-\cos y--\cos 0)=\frac{1}{2}-\frac{1}{2} \cos y
$$

Thus

$$
F(y)= \begin{cases}0 & y<0 \\ \frac{1}{2}-\frac{1}{2} \cos y & 0 \leq y<\pi \\ 1 & \pi \geq y\end{cases}
$$

-1 point if the bounds of each interval do not complement each other.
-3 points if they forget to define $F(y)$ on the intervals $x<0$ and $x \geq \pi$.
(b) (15 points) Calculate $P\left(\frac{\pi}{3}<Y<\frac{2 \pi}{3}\right)$.

$$
\begin{aligned}
P\left(\frac{\pi}{3}<Y<\frac{2 \pi}{3}\right)=F\left(\frac{2 \pi}{3}\right)-F\left(\frac{\pi}{3}\right) & =\left(\frac{1}{2}-\frac{1}{2} \cos \left(\frac{2 \pi}{3}\right)\right)-\left(\frac{1}{2}-\frac{1}{2} \cos \left(\frac{\pi}{3}\right)\right) \\
& =\left(\frac{1}{2}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{2}
\end{aligned}
$$

(c) (15 points) Find $E(Y)$.

$$
\begin{aligned}
E(Y)=\int_{0}^{\pi} \frac{y \sin y}{2} d y & =\left.\frac{-y \cos y}{2}\right|_{0} ^{\pi}-\int_{0}^{\pi}-\frac{\cos y}{2} d y \\
& =\frac{-\pi \cos \pi}{2}-\frac{-0 \cos 0}{2}-\left[\frac{-\sin y}{2}\right]_{0}^{\pi} \\
& =\frac{\pi}{2}-\left[\frac{-\sin \pi}{2}+\frac{\sin 0}{2}\right]=\frac{\pi}{2}
\end{aligned}
$$

Or if they can argue that the pdf is symmetric over $y=\pi / 2$, this is a proper justification (they must show that $f\left(\frac{\pi}{2}+y\right)=f\left(\frac{\pi}{2}-y\right)$.
6. (10 points) The pdf of W is

$$
f(w)= \begin{cases}\frac{|w|}{4} & -2<w<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Given that $\mu_{W}=0$, find $\operatorname{Var}(W)$.
We have that $E(W)=0$, so $\operatorname{Var}(W)=E\left(W^{2}\right)-0^{2}$.

$$
\operatorname{Var}(W)=\frac{1}{4} \int_{-2}^{2} w^{2}|w| d w=2 \frac{1}{4} \int_{0}^{2} w^{3} d w=\frac{1}{2}\left[\frac{1}{4} w^{4}\right]_{0}^{4}=\frac{1}{8} 2^{4}=2
$$

Extra Credit: (10 points) Based on $4,5,6$ and 7 , calculate $E(5 R+4 X-3 Y-2 W+1)$.
$E(R)=3$ (has to be calculated)
$E(X)=\frac{5}{3}$ (has to be calculated)
$E(Y)=\frac{\pi}{2}$
$E(W)=0$
So

$$
\begin{aligned}
E(5 R+4 X-3 Y+2 W+1) & =5(3)+4\left(\frac{5}{3}\right)-3\left(\frac{\pi}{2}\right)+2(0)+1 \\
& =15+\frac{20}{3}-\frac{3 \pi}{2}+1 \\
& =\frac{136-9 \pi}{6}
\end{aligned}
$$

