Exam 2 Review with Solutions

Instructor: Brian Powers

1 Memorize

If $X \sim \operatorname{Bern}(p), E(X)=p, \operatorname{Var}(X)=p q$.
If $X \sim \operatorname{Binom}(n, p), f(x)=\binom{n}{x} p^{x} q^{n-x}, E(X)=n p, \operatorname{Var}(X)=n p q$.
If $X \sim \operatorname{Poisson}(\lambda t), E(X)=\operatorname{Var}(X)=\lambda t$.
If X_{i} s are independent, $E(\bar{X})=\mu, \operatorname{Var}(\bar{X})=\sigma^{2} / n$ regardless of the distribution.
CLT says: $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ approximately, or $(\bar{X}-\mu) /(\sigma / \sqrt{n}) \sim N(0,1)$
If $X \sim U n i f_{C}(a, b), f(x)=\frac{1}{b-a}$ for $x \in[a, b], E(X)=\frac{a+b}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.

2 Don't Have to Memorize

Poisson pmf: $f(x)=\frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$ for $x \in \mathbb{N}$.
Hypergeometric, Geometric, Negative binomial pmf.
Normal distribution pdf
Gamma distribution pdf
t-distribution pdf

3 Review Problems

1. Give the name of the distribution best used to model each random variable:
(a) Whether or not the first life savers in the package is pineapple Bernoulli
(b) The number of cherry starburst candies in a package of 12 Binomial
(c) The number of mystery dum-dums you need to unwrap until you get a root beer Geometric
(d) The number of trick-or-treaters until you've seen 10 Elsas (from Frozen) Negative Binomial
(e) The number of red candies in a handful of 10 drawn from a bowl of red, blue and yellow candies Hypergeometric
(f) The number of trick-or-treaters coming to your door between 8:05 and 8:10pm Poisson
(g) The length of time between trick-or-treaters Exponential
(h) The length of time until 10 trick-or-treaters in total have arrived Gamma
(i) The height of the next trick-or-treater Normal
(j) The angle between the seconds hand and minutes hand when the first trick-or-treater arrives.
Uniform
2. In a game, you are allowed to roll a pair of fair dice 24 times. If you get a double six (i.e. you roll $(6,6)$) at least 4 times you win. What is the probability you win this game?
The probability of rolling two sixes is

$$
P(66)=P(6) P(6)=\frac{1}{36}
$$

Say X is the number of double-sixes rolled out of 24 trials. Then $X \sim \operatorname{Binom}\left(24, \frac{1}{36}\right)$. You win if $X \geq 4$, so

$$
P(\text { Win })=P(X \geq 4)=1-P(X \leq 3)=1-\operatorname{binomcdf}(24,1 / 36,3)=.0041
$$

3. Let X be the number of customer logins on a website during an hour. Assume X has a Poisson distribution with a mean of 120 login requests per hour.
(a) What is the probability that no one requests to \log on the site in the next ten minutes?
10 minutes is $\frac{1}{6}$ of an hour, so the number of logins during 10 minutes will follow a Poisson with parameter $120 / 6=20$. Let $Y \sim \operatorname{Poisson}(20)$.

$$
P(Y=0)=\text { poissonpdf }(20,0) \approx 0
$$

or

$$
P(Y=0)=\frac{20^{0} e^{-20}}{0!}=e^{-20} \approx 0
$$

(b) Let W be the time in minutes between the 2nd and 3rd request. What is the distribution name of W ? What is the expected value of W ?
This is an exponential distribution (or Gamma). Since there is on average 2 login requests per minute, $\beta=1 / 2$. The expected value is β, which is 30 seconds.
(c) Let T be the time in minutes until the 4 th request. What is the distribution name of T ? What is the expected value of T ?
This is a Gamma distribution with $\alpha=4, \beta=1 / 2$. The expected value is $\alpha \beta=2$ minutes.
4. At a certain gas station, the number of lottery winners each month follows a Poisson distribution with mean 1 .
(a) What is the probability that there are no more than 3 winners this year? The number of winners in a year will follow a Poisson distribution with mean 12. Let Y be the number of winners in a year.

$$
P(Y \leq 3)=\text { poissoncdf }(12,3)=.00229
$$

(b) What is the probability there is at least one winner during a month? Let X be the number of winners in a month.

$$
P(X \geq 1)=1-P(X=0)=1-\text { poissonpdf }(1,0)=.63212
$$

or

$$
P(X \geq 1)=1-P(X=0)=1-\frac{1^{0} e^{-1}}{0!}=1-e^{-} 1=.63212
$$

(c) What is the probability that there is at least one winner every month during the year?
Assuming whether it happens in each month is indepedent,

$$
P(\geq 1 \text { winner } 12 \text { months straight })=(.63212)^{12}=.00407
$$

5. Let $X_{1}, X_{2}, \ldots, X_{36}$ be a random sample from a continuous Uniform distribution over $[0,2]$.
(a) Find the pdf for the population.
$f(x)=\frac{1}{2-0}=\frac{1}{2}$ for $x \in[0,2], f(x)=0$ otherwise.
(b) Find the mean and variance for the population.

By theorem: $E(X)=\frac{b-a}{2}=\frac{2-0}{2}=1, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}=\frac{(2-0)^{2}}{12}=\frac{1}{3}$
You may also argue that $\mu=1$ by integral,

$$
\mu=\int_{0}^{2} \frac{1}{2} d x=\left.\frac{x}{2}\right|_{0} ^{2}=1-0=0
$$

Or by symmetry of the density function about $x=1$. You can calculate the variance directly by $\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}$,

$$
\sigma^{2}=\int_{0}^{2} \frac{x^{2}}{2} d x-1^{2}=\left.\frac{x^{3}}{6}\right|_{0} ^{2}-1=\frac{8}{6}-1=\frac{1}{3}
$$

(c) Find the mean and variance for the sample mean $\bar{X}=\left(X_{1}+\cdots+X_{36}\right) / 36$. $E(\bar{X})=\mu=1 . \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\frac{1 / 3}{36}=\frac{1}{108}$
(d) Use the Central Limit Theorem to estimate $P(0.9<\bar{X}<1.1)$. By Central Limit Theorem, $\bar{X} \sim N\left(1, \frac{1}{108}\right)$ approximately. So

$$
P(0.9<\bar{X}<1.1) \approx \operatorname{normalcdf}(.9,1.1,1, \sqrt{1 / 108})=.7013
$$

or you can calculate $z_{1}=(.9-1) / \sqrt{1 / 108}=-1.039, z_{2}=(1.1-1) / \sqrt{1 / 108}=$ 1.039,

$$
P(-1.039<Z<1.039)=\operatorname{normalcdf}(-1.039,1.039)=.7012
$$

6. If a r.v. X follows a normal distribution with mean 80 and standard deviation 20, find the following using the Empirical rule (68-95-99.7 rule).
(a) $P(X \geq 20)$

20 is 3 standard deviations from the mean. In the tail past 3 standard deviations there is approximately $.003 / 2=.0015 \%$. So $P(X \geq 20)=1-$ $.0015=.9985$
(b) $P(|X-80| \leq 40)$
$P(|X-80| \leq 40)$ is the probability of being within 2 standard deviations. That is .95 according to the empirical rule.
(c) $P(X \leq 100)$

100 is 1 standard deviation from the mean, there is $(1-.68) / 2=.16$ probability in the upper tail, so $P(X \leq 100)=1-.16=.84$.
(d) $P(X>120)$

120 is 2 standard deviations above the mean, there is $.05 / 2=.025$ probability in the upper tail, so $P(X>120)=.025$.
7. The size of a download from a server follows a normal distribution with mean 4 MB and standard deviation 0.8 MB .
(a) What is the probability that a download exceeds 5 MB ?

Let X be the size of a random download. $P(X>5)=\operatorname{normalcdf}(5,1000,4, .8)=$. 1056
(b) What are the 25 th and 75 th percentiles?

The 25 th percentile is $\operatorname{invNorm}(.25,4, .8)=3.46 \mathrm{MB}$. The 75 th percentile is invNorm $(.75,4, .8)=4.54 \mathrm{MB}$
(c) If someone downloads 5 files, what is the probability that the total download is more than 22 MB ?
The sample sum will follow a Normal distribution with mean 5(4) $=20$ and standard deviation $\sqrt{5}(.8)=1.789$. Let S_{5} be the sample sum, with a sample size of 5 .

$$
P\left(S_{5}>22\right)=\text { normalcdf }(22,10000,20,1.789)=.1318
$$

8. Statistics show that on an average weekend night 1 out of 10 drivers on the road is drunk.
(a) If 20 drivers are checked, what is the expected number of drunk drivers? The number of drunk drivers, X follows a binomial distribution with $n=$ $20, p=.1$, so $E(X)=n p=2$.
(b) If 20 drivers are checked, what is the probability that at least 1 of them is drunk?

$$
P(X \geq 1)=1-P(X=0)=1-\binom{20}{0}(.1)^{0}(.9)^{20}=.8784
$$

or

$$
P(X \geq 1)=1-P(X=0)=1-\operatorname{binompdf}(20, .1,0)=.8784
$$

(c) If a sample of 200 drivers are checked, what is the mean and variance for the number of drunk drivers?
If $n=200, \mu=200(.1)=20, \sigma^{2}=200(.1)(.9)=18$

