Exam 2

Name:

For full credit you must show your work. If you use a calculator function, please write down the calculator input you used to get your answer. Read each problem carefully.

1. You make a bet for $\$ 100$: If you can make at least 7 out of 10 baskets, you win. Suppose your probability of making each basket is $3 / 4$, and each attempt is independent.
(a) (10 points) If X is the number of baskets you make, what is the distribution of X (give the distribution name and parameter values).
Binomial Distribution, $n=10, p=3 / 4$.
(b) (10 points) What is the probability you win the bet? $P($ Win $)=P(X \geq 7)=1-P(X \leq 6)=1-\operatorname{binomcdf}(10, .75,6)=.7759$
(c) (Bonus 5 points) What is the expected value for this bet?
$P($ Win $)=.7759$, so $P($ Lose $)=1-.7759=.2241$. You gain $\$ 100$ if you win, lose $\$ 100$ if you lose, so the expected winnings is $100(.7759)-100(.2241)=$ $\$ 55.18$
2. At work, the number of phone calls each hour follows a Poisson distribution with mean of 5 .
(a) (10 points) What is the probability that 30 minutes goes by without the phone ringing?
The average number of calls in 30 minutes is 2.5 , and the number of calls in 30 minutes follows a Poisson distribution as well. Let Y be the number of calls in 30 minutes. $P(Y=0)=$ poissonpdf $(2.5,0)=e^{-2.5}=.082$
(b) (10 points) Let T be the total number of phone calls over a 40 hour work week. What is $E(T)$ and what precise distribution does it follow (do not use Central Limit Theorem)?
The number of calls in any length of time should follow a Poisson distribution, the mean will be proportional to the length of time. So $E(T)=40(5)=200$, and T follows a Poisson distribution (with $\lambda=200$)
(c) (10 points) Let $H=\frac{T}{40}$, that is, the average hourly number of phone calls during this week. What distribution does H follow (approximately) under the Central Limit Theorem (Give the distribution name, μ_{H} and σ_{H}).
H is simply a sample average from 40 independent hours. If the number of calls in each hour are X_{1}, \ldots, X_{40}, with $X \sim \operatorname{Poisson}(5)$, then $\mu_{X}=$ $5, \sigma_{X}=\sqrt{5}$. So $H=\bar{X}$ is approximately Normal with mean $\mu_{H}=5$, and $\sigma_{H}=\sqrt{5} / \sqrt{40}=.3536$.
(d) (10 points) What is the approximate probability that $H>5.5$, by Central Limit Theorem?
$P(H>5.5) \approx$ normalcdf $(5.5,1000,5, .3536)=.0787$
(e) (Bonus 5 points) What is the exact probability that $H>5.5$? (Hint: you have to use the distribution of T)
$P(H>5.5)=P(40 H>40 \cdot 5.5)=P(T>220)=1$-poissoncdf $(200,220)=$.0753, Which means the approximation isn't too far off.
3. Let X follow a Normal distribution with $\mu=50$ and $\sigma=15$.
(a) (10 points) Find $P(44<X<58)$. normalcdf $(44,58,50,15)=.3585$
(b) (10 points) Find x such that $P(X>x)=.01$ (i.e. the 99 th percentile). $x=\operatorname{invNorm}(.99,50,15)=84.895$
(c) (10 points) If X_{1}, \ldots, X_{9} are independently drawn from this population, with $\bar{X}=\frac{1}{9}\left(X_{1}+\cdots+X_{9}\right)$, find $P(44<\bar{X}<58)$.
\bar{X} follows a Normal distribution with $\mu_{\bar{X}}=50, \sigma_{\bar{X}}=15 / \sqrt{9}=5$. So $P(44<\bar{X}<58)=\operatorname{normalcdf}(44,58,50,5)=.8301$
4. (10 points) The length of time between births at a hospital follows an Exponential distribution with a mean of 6 hours. If a baby is born at 9 am , what is the probability another baby is born before 10am?
Method 1: Let X be the length of time in hours until the next birth, which follows an exponential distribution with $\beta=6$.

$$
P(X<1)=\int_{0}^{1} \frac{1}{6} e^{-x / 6} d x=-\left.e^{-x / 6}\right|_{0} ^{1}=-e^{-1 / 6}--1=.1535
$$

Method 2: The number of babies born in 1 hour is on average $1 / 6$, so Y, the number of babies born in the next hour follows a Poisson distribution with $\lambda=$ $1 / 6$.

$$
P(Y \geq 1)=1-P(Y=0)=1-e^{-1 / 6}=.1535
$$

Some Distributions

$\operatorname{Binomial}(n, p)$

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

Geometric (p)

$$
f(x)=p(1-p)^{x-1}, q \quad x=1,2, \ldots
$$

Negative $\operatorname{Binomial}(k, p)$

$$
f(x)=\binom{x-1}{k-1} p^{k}(1-p)^{x-k}, \quad x=k, k+1, \ldots
$$

Poisson (λt)

$$
f(x)=\frac{(\lambda t)^{x} e^{-\lambda t}}{x!}, \quad x=0,1,2, \ldots
$$

$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}, \quad x \in \mathbb{R}
$$

$\operatorname{Gamma}(\alpha, \beta)$

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, \quad x>0
$$

Exponential (β)

$$
f(x)=\frac{1}{\beta} e^{-x / \beta}, \quad x>0
$$

Chi-Squared (v)

$$
f(x)=\frac{1}{\Gamma\left(\frac{v}{2}\right) 2^{v / 2}} x^{v / 2-1} e^{-2 x}, \quad x>0
$$

