MATH 417 HOMEWORK 11

This homework is due Wednesday November 26 in the beginning of class. You may collaborate on the homework. However, the final write-up must be yours and should reflect your own understanding of the problem. Please be sure to properly cite any help you get.

Problem 1 Apply Rouché's Theorem to $f(z)=z^{n}$ and $g(z)=a_{0}+a_{1} z+\cdots+$ $a_{n-1} z^{n-1}$, where $n \geq 1$, on a circle of appropriately chosen radius R around the origin (Hint: What should R be?) to prove that the polynomial

$$
a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}+z^{n}
$$

has precisely n zeros counting with multiplicity. Recall that we proved the Fundamental Theorem of Algebra before using Liouville's Theorem.

Problem 2 Suppose that $f(z)$ is analytic inside and on a positively oriented simple closed contour C and that it has no zeros on C. Suppose that f has n zeros z_{1}, \ldots, z_{n} inside C with multiplicities m_{1}, \ldots, m_{n}, respectively. Show that

$$
\int_{C} \frac{z f^{\prime}(z)}{f(z)} d z=2 \pi i \sum_{k=1}^{n} m_{k} z_{k}
$$

Problem 3 Determine the number of zeros (counting with multiplicity) of the following polynomials contained in the unit circle $|z|=1$

$$
\text { (a) } z^{15}-2 z^{12}+17 z^{7}-3 \quad \text { (b) } z^{9}-z^{7}+3 z^{3}-z-12
$$

Problem 4 Determine the number of zeros (counting with multiplicity) of the following polynomials in the annulus $1<|z|<2$

$$
\text { (a) } z^{9}-7 z^{5}+3 z-2 \quad \text { (b) } z^{7}-15 z^{6}+23 z+1
$$

Problem 5 Suppose c is a complex number such that $|c|>e$, show that the equation $c z^{n}=e^{z}$ has n roots inside the unit circle $|z|=1$ counting with multiplicity. Now instead suppose $|c|<\frac{1}{e}$. How many solutions does the equation $c z^{n}=e^{z}$ have inside the unit circle $|z|=1$?

