MATH 417 HOMEWORK 12

This homework is due Wednesday December 3 in the beginning of class. You may collaborate on the homework. However, the final write-up must be yours and should reflect your own understanding of the problem. Please be sure to properly cite any help you get.

Problem 1 Find a linear fractional transformation that takes the points $1, i,-i$ to the points $1,2,3$, respectively.

Problem 2 Find a linear fractional transformation that takes the circle $|z|=2$ to the circle $|z+1|=1$, the point -2 to the origin, and the origin to the point i.

Problem 3 Find a linear fractional transformation that takes the two circles/lines $x=2$ and $|z|=1$ to two concentric circles.

Problem 4 Find a 1-1 analytic map from the complement of the non-negative real numbers in the complex plane $\mathbb{C}-\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right)$ onto the unit disc $|z|<1$.

Problem 5 Suppose that f is an analytic function from the unit disc $|z|<1$ into the unit disc (i.e., $|f(z)|<1$) that has a zero of order n at the origin. Prove that $|f(z)| \leq|z|^{n}$. Furthermore, show that if $|f(a)|=|a|^{n}$ for some a with $|a|<1$, then $f(z)=\epsilon z^{n}$ for some ϵ with $|\epsilon|=1$.

Extra Credit Problem non-Euclidean Geometry: Let D denote the unit disc $|z|<1$ and let C be the unit circle $|z|=1$. Define a non-Euclidean point to be a complex number $z \in D$. Define a non-Euclidean line to be the intersection of any circle or any line in the complex plane that intersects C in two points and is orthogonal to C at those two points. Two non-Euclidean lines are called parallel if they do not intersect in D. You might find it amusing to show that with these definitions non-Euclidean points and lines satisfy all the axioms for points and lines in Euclidean geometry except the parallel postulate. Show that through any two non-Euclidean points there is a unique non-Euclidean line. Find a non-Euclidean line l and a point $z \notin l$ such that there are infinitely many nonEuclidean lines through z parallel to l. Show that there exists a linear fractional transformation that takes the unit disc D to itself and any non-Euclidean point z_{1} to any other non-Euclidean point z_{2}. Define a non-Euclidean distance by $d\left(z_{1}, z_{2}\right)=$ $\log \left(\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right)$ where z_{3}, z_{4} are the two points on C where the non-Euclidean line through z_{1} and z_{2} meets C. (Here $z_{1}, z_{2}, z_{3}, z_{4}$ are ordered in the order they occur on the circle. The cross-ratio is positive.) Show that there exists a linear fractional transformation taking D to itself and a pair of non-Euclidean points $\left(z_{1}, z_{2}\right)$ to another pair $\left(w_{1}, w_{2}\right)$ if and only if $d\left(z_{1}, z_{2}\right)=d\left(w_{1}, w_{2}\right)$.

