MATH 417 HOMEWORK 3

This homework is due Wednesday September 17 in the beginning of class. You may collaborate on the homework. However, the final write-up must be yours and should reflect your own understanding of the problem. Please be sure to properly cite any help you get.

Problem 1 Consider the composition $f(w(z))$ of two complex valued functions of a complex variable, $f(w)$ and $w(z)$, where $z=x+i y$ and $w=u+i v$. Assume that both functions have continuous partial derivatives. Show that the chain rule can be written in complex form as

$$
\frac{\partial f}{\partial z}=\frac{\partial f}{\partial w} \frac{\partial w}{\partial z}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{w}}{\partial z} \quad \text { and } \quad \frac{\partial f}{\partial \bar{z}}=\frac{\partial f}{\partial w} \frac{\partial w}{\partial \bar{z}}+\frac{\partial f}{\partial \bar{w}} \frac{\partial \bar{w}}{\partial \bar{z}}
$$

Show as a consequence that if $f(w)$ is analytic in w and $w(z)$ is analytic in z, then $f(w(z))$ is an analytic function of z.

Problem 2 Let $f(z)=u(x, y)+i v(x, y)$ be an analytic function. Show that

$$
\left|f^{\prime}(z)\right|^{2}=\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}-\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}
$$

Hence the absolute value of the derivative of an analytic function is the Jacobian of the differentiable transformation of the plane defined by that function.

Problem 3 Can $2 x^{3}-6 x y^{2}+x^{2}-y^{2}-y$ be the real part of an analytic function? If so, find all possible imaginary parts.

Problem 4 Can $x^{2}-y^{2}+e^{-y} \sin x-e^{y} \cos x$ be the real part of an analytic function? If so, find all possible imaginary parts.

Problem 5 Determine the minimal conditions on the coefficients a, b, c, d that guarantee that the function $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is harmonic.

