## 1. MATH 494: Homework 3

This problem set is due Wednesday September 22. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding.

Problem 1.1. Determine which of the following affine varieties in $\mathbb{A}_{\mathbb{C}}^{2}$ are isomorphic. You must justify your answers.
(1) $V(y-x)$
(2) $V\left(y-x^{3}\right)$
(3) $V\left(y^{2}-x^{2}\right)$
(4) $V\left(y^{2}-x^{3}-x^{2}\right)$.

Problem 1.2. Show that $\mathbb{A}^{1}-\{0\}$ is an affine variety by showing that it is isomorphic to $x y=1$ in $\mathbb{A}^{2}$. More generally, if $V(f)$ is the hypersurface in $\mathbb{A}^{n}$ defined by the polynomial $f$, show that $\mathbb{A}^{n}-V(f)$ is an affine variety. (Hint: Show that $\mathbb{A}^{n}-V(f)$ is isomorphic to $x_{n+1} f=1$.) Conclude that the set of invertible $n \times n$ matrices is an affine variety.

Problem 1.3. Show that $X=\mathbb{A}^{2}-\{(0,0)\}=\mathbb{A}^{2}-V(x, y)$ is not isomorphic to an affine variety by carrying out the following steps.
(1) Show that any polynomial vanishing on $X$ vanishes on $\mathbb{A}^{2}$.
(2) Conclude that the coordinate rings of $X$ and $\mathbb{A}^{2}$ are isomorphic with isomorphism induced by inclusion.
(3) Using the correspondence between morphisms between $k$-algebras and morphisms between affine varieties, obtain a contradiction.

Problem 1.4. Find the irreducible components of $V(x y z)$ in $\mathbb{A}_{\mathbb{C}}^{3}$. Find the irreducible components of $V(x y, x z, y z)$ in $\mathbb{A}_{\mathbb{C}}^{3}$.

Problem 1.5. Let $f: X \rightarrow Y$ be a surjective morphism of affine varieties. Show that if $X$ is irreducible, then $Y$ is irreducible. Use this fact to check that $V\left(y-x^{2}, z-x y\right)$ in $\mathbb{A}_{\mathbb{C}}^{3}$ is irreducible (Hint: Think about Homework 2 Problem 2).

