1. MATH 494: Homework 4

This problem set is due Friday October 8. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding.

Problem 1.1. Show that any two lines in \mathbb{P}_{k}^{2} intersect. If you take two parallel lines

$$
a x+b y-c=0 \text { and } a x+b y-d=0
$$

in \mathbb{R}^{2} (viewed as a distinguished affine in $\mathbb{P}_{\mathbb{R}}^{2}$), at which point of $\mathbb{P}_{\mathbb{R}}^{2}$ do they intersect?
Problem 1.2. Let C be an irreducible conic in $\mathbb{P}_{\mathbb{C}}^{2}$. Show that C intersects every curve defined by a homogeneous polynomial F of degree d and not vanishing identically on C in $2 d$ points (counting with multiplicity).

Problem 1.3. Let Λ be an s-dimensional linear space in \mathbb{P}_{k}^{n}. Let Γ be a t-dimensional linear space in \mathbb{P}_{k}^{n}. Show that Λ and Γ have a non-empty intersection if $s+t \geq n$.

Problem 1.4. Using the previous problem, show that given a set of $n \leq d(d+3) / 2$ points in \mathbb{P}^{2}, there exists a non-zero homogeneous polynomial of degree d in three variables vanishing at all the points.

Problem 1.5. Let me know your final paper topic.

