MATH 417 HOMEWORK 5

This homework is due Wednesday February 20 in the beginning of class. You may collaborate on the homework. However, the final write-up must be yours and should reflect your own understanding of the problem. Please be sure to properly cite any help you get.

Problem 1 Let n and m be two integers. Show that

$$
\int_{0}^{2 \pi} e^{i m \theta} e^{-i n \theta} d \theta=0
$$

if $n \neq m$ and is 2π is $n=m$.
Problem 2 Evaluate the following integrals:
(1) The integral

$$
\int_{C} \frac{z+4}{z} d z
$$

for each of the following contours
(a) The semi-circle $z=4 e^{i \theta}$ for $0 \leq \theta \leq \pi$
(b) The circle $z=4 e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$
(2) The integral

$$
\int_{C} \pi \exp (\pi \bar{z}) d z
$$

where C is the boundary of the square with vertices $0,1,1+i, i$ oriented in the counterclockwise direction starting and ending at 0 .

Problem 3 Let C denote the line segment from $z=i$ to $z=1$. Show that

$$
\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

Problem 4 Let C_{R} denote the upper half circle $|z|=R$ (for $R>2$) parameterized in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Conclude that the integral tends to zero as R tends to infinity.
Problem 5 Let C_{R} denote the upper half circle $|z|=R$ (for $R>1$) parameterized in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log (z)}{z^{2}} d z\right| \leq 2 \pi \frac{\pi+\ln R}{R}
$$

Conclude that the integral tends to zero as R tends to infinity.

