HOMEWORK 5

You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In all these exercises assume that k is an algebraically closed field and R is a commutative ring with unit.

Problem 0.1. Recall that "If $f: X \rightarrow Y$ is a surjective morphism of projective varieties such that
(1) Y is irreducible,
(2) Every fiber of f is irreducible,
(3) Every fiber of f has the same dimension,
then X is irreducible." Show that all three assumptions are necessary.
Problem 0.2. Compute the multiplication table for the cohomology of $G(2,5)$.

Problem 0.3. Prove Pieri's formula

$$
\sigma_{1} \cdot \sigma_{\lambda_{1}, \ldots, \lambda_{k}}=\sum_{\lambda_{i} \leq \mu_{i} \leq \lambda_{i-1}, \sum \mu_{i}=1+\sum \lambda_{i}} \sigma_{\mu_{1}, \ldots, \mu_{k}}
$$

where $\sigma_{\lambda_{1}, \ldots, \lambda_{k}}$ and $\sigma_{\mu_{1}, \ldots, \mu_{k}}$ are Schubert cycles in $G(k, n)$.
Problem 0.4. We say that a plane curve $F=0$ has a cusp at p if the Taylor expansion of F at p has the form

$$
L^{2}+\text { h.o.t. }
$$

where L is a line containing p and h.o.t. denotes higher order terms. Show that for $d>2$ plane curves of degree d that have a cusp form a projective subvariety of codimension two in $\mathbb{P}^{d(d+3) / 2}$, the space of plane curves of degree d. (Hint: Linearize the problem by considering plane curves that have a cusp at p with tangent direction L.)

Problem 0.5. Let $X \subset \mathbb{P}^{n}$ be a projective variety. The secant variety to X is the closure of the union of lines spanned by distinct points on X

$$
\operatorname{Sec}(X)={\overline{\cup_{p, q \in X, p \neq q} \overline{p q}} . . . ~}
$$

Prove that $\operatorname{Sec}(X)$ is a projective variety of dimension less than or equal to $\min (2 \operatorname{dim}(X)+1, n)$. We say that the secant variety is defective if $\operatorname{dim}(\operatorname{Sec}(X))<\min (2 \operatorname{dim}(X)+1, n)$. Prove that $\operatorname{Sec}(X)$ is defective if and only if every point $x \in \operatorname{Sec}(X)$ lies on infinitely many secant lines to X. Show that the secant variety of the Veronese image $\nu_{2}\left(\mathbb{P}^{2}\right)$ in \mathbb{P}^{5} is defective. Hard Challenge: Show that a surface S in \mathbb{P}^{5} which is not contained in any hyperplane has a defective secant variety if and only if S is the Veronese image $\nu_{2}\left(\mathbb{P}^{2}\right)$.

Problem 0.6. More generally, let $X \subset \mathbb{P}^{n}$ be a projective variety. The r-secant variety $\operatorname{Sec}_{r}(X)$ to X is the closure of the union of the \mathbb{P}^{r-1} 's spanned by r distinct points p_{1}, \ldots, p_{r} in X in general linear position. Prove that $\operatorname{Sec}_{r}(X)$ is a projective variety of dimension less than or equal to $\min (r \operatorname{dim}(X)+r-1, n)$. We say that $\operatorname{Sec}_{r}(X)$ is defective if the dimension of $\operatorname{Sec}_{r}(X)$ is strictly less than $\min (r \operatorname{dim}(X)+r-1, n)$. Show that $\operatorname{Sec}_{r}(X)$ is defective if and only if every point on $\operatorname{Sec}_{r}(X)$ is contained in infinitely many secant \mathbb{P}^{r-1} 's to X. Show that the fourth Veronese image $\nu_{4}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{14}$ has a defective 5 -secant variety Sec $c_{5}\left(\nu_{4}\left(\mathbb{P}^{2}\right)\right)$. Hard Challenge: Show that among the secant varieties to the Veronese images of \mathbb{P}^{2}, $\operatorname{Sec}_{2}\left(\nu_{2}\left(\mathbb{P}^{2}\right)\right)$ and $\operatorname{Sec}_{5}\left(\nu_{4}\left(\mathbb{P}^{2}\right)\right)$ are the only defective secant varieties.

