HOMEWORK 8

You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In this problem set assume that all the varieties are defined over the complex numbers.

Problem 0.1. Consider the closed algebraic set X in $\mathbb{G}(1,3) \times \mathbb{G}(1,3) \times \mathbb{G}(1,3)$ consisting of triples of lines in \mathbb{P}^{3} any two of which intersect:

$$
X:=\left\{\left(l_{1}, l_{2}, l_{3}\right) \in \mathbb{G}(1,3) \times \mathbb{G}(1,3) \times \mathbb{G}(1,3) \mid l_{i} \cap l_{j} \neq \emptyset\right\}
$$

Determine the number of irreducible components of X and the dimension of each of the irreducible components. Is X smooth? Is X normal?

Problem 0.2. Prove that a smooth, projective variety of dimension k admits an embedding in $\mathbb{P}^{2 k+1}$.
Problem 0.3. Let $X=v_{2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ be the Veronese surface in \mathbb{P}^{5} given by

$$
\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right) .
$$

Consider the projection of X from the point $(0,0,0,0,0,1)$ to \mathbb{P}^{5} given by

$$
\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}\right) .
$$

Is the image of this projection normal? (Remark: Zariski's Main Theorem asserts that if $f: X \rightarrow Y$ is a regular and birational map between projective varieties and Y is normal, then the fibers $f^{-1}(y)$ of f are connected. What is the relevance to this exercise?)

Problem 0.4. Prove that the quadric cone $x_{1}^{2}+\cdots+x_{n}^{2}$ in $\mathbb{A}^{n}(n \geq 3)$ is normal.
Problem 0.5. A projective variety $X \subset \mathbb{P}^{n}$ is called projectively normal if its homogeneous coordinate ring $S(Y)$ is integrally closed. Show that if Y is projectively normal, then Y is normal. Show that the converse does not in general hold by considering the quartic curve C given as the image of

$$
(t, u) \mapsto\left(t^{4}, t^{3} u, t u^{3}, u^{4}\right)
$$

in \mathbb{P}^{3}. Show that C is normal, but not projectively normal.

