
THE HILBERT SCHEME

Many important moduli spaces can be constructed as quotients of
the Hilbert scheme by a group action. For example, to construct the
moduli space of smooth curves of genus g ≥ 2, we can first embed all
smooth curves of genus g in Pn(2g−2)−g by a sufficiently large multiple of
their canonical bundle Kn

C . Any automorphism of a variety preserves
the canonical bundle. Hence, two n-canonically embedded curves are
isomorphic if and only if they are projectively equivalent. If we had a
parameter space for n-canonically embedded curves, then the moduli
space of curves would be a quotient of this parameter space by the
projective linear group. The Hilbert scheme parameterizes subschemes
of projective space with a fixed Hilbert polynomial, thus provides the
starting point for all such constructions.

We will take up the construction of the moduli space of curves in the
next section. In this section, we sketch a construction of the Hilbert
scheme and give many explicit examples.

1. The construction of the Hilbert scheme

We assume that all our schemes are Noetherian over an algebraically
closed field k. Let X → S be a projective scheme, O(1) a relatively
ample line bundle and P a fixed polynomial. Recall that the Hilbert
functor

HilbP (X/S) : {Schemes/S}o → {sets}
associates to an S scheme Y the subschemes of X ×S Y which are
proper and flat over Y and have the Hilbert polynomial P .

A fundamental theorem of Grothendieck asserts that the Hilbert
functor HilbP (X/S) is representable by a projective scheme.

Theorem 1.1. Let X/S be a projective scheme, O(1) a relatively am-
ple line bundle and P a fixed polynomial. The functor HilbP (X/S) is
represented by a morphism

u : UP (X/S)→ HilbP (X/S).

HilbP (X/S) is projective over S.

I will now explain the main ideas of the proof. There are many
excellent accounts of Theorem 1.2. My presentation will follow closely
[Gr], [Mum2], [K] and [Se].
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1.1. The strategy. Let us first concentrate on the case X = Pn and
S = Spec(k). A subscheme of projective space is determined by its
equations. The polynomials in k[x0, . . . , xn] that vanish on a sub-
scheme form an infinite-dimensional subvector space of k[x0, . . . , xn].
Of course, each subscheme Z is defined by finitely many polynomials
and Z is determined by the polynomials of degree d vanishing on Z
for a sufficiently large degree. This is now a finite dimensional vector
subspace of the vector space of polynomials of degree d. Suppose the
degree d of the polynomials needed to determine Z were bounded de-
pending only on the Hilbert polynomial of Z. Further suppose that the
ideal sheaf IZ(k) did not have any higher cohomology for k ≥ k0 for
some k0 again depending only on the Hilbert polynomial of Z. Then
the schemes with Hilbert polynomial P would all be determined by
a finite dimensional vector space of polynomials and furthermore all
these vector spaces would have the same dimension. We would thus
get an injection of the schemes with Hilbert polynomial P into a Grass-
mannian. We have already seen that the Grassmannian (together with
its tautological bundle) represents the functor classifying subspaces of
a vector space. Assuming the image in the Grassmannian is an alge-
braic subscheme Y , we can use Y and the restriction of the tautological
bundle to represent the Hilbert functor. This is exactly the strategy
we will follow.

1.2. Bounding the regularity of an ideal sheaf and constructing
the Hilbert scheme as a subset of a Grassmannian. Given a
proper subscheme Y of Pn and a coherent sheaf F on Y , by Serre’s
Theorem, the higher cohomology H i(Y, F (m)), i > 0, vanishes for m
sufficiently large. The finiteness that we are looking for comes from the
fact that if we restrict ourselves to ideal sheaves of subschemes with a
fixed Hilbert polynomial P , we can find an integer m depending only
on P (and not on the subscheme) that works simultaneously for the
ideal sheaf of every subscheme with Hilbert polynomial P .

Theorem 1.2. For every polynomial P , there exists an integer mP

depending only on P such that for every subsheaf I ⊂ OPn with Hilbert
polynomial P and every integer k ≥ mP

(1) hi(Pn, I(k)) = 0 for i > 0;
(2) I(k) is generated by global sections;
(3) H0(Pn, I(k))⊗H0(Pn,O(1))→ H0(Pn, I(k + 1)) is surjective.

Exercise 1.3. For each a ≥ 0, let Ea = OP1(−a)⊕OP1(a) be a vector
bundle of rank 2 and degree 0 on P1. Show that there does not exist
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k such that h1(P1, Ea(k)) = 0 for all a ≥ 0. Show that there does
not exist k such that Ea(k) is globally generated for all a ≥ 0. This
example shows that we will need to use the assumption that I is an
ideal sheaf in the proof of Theorem 1.3. Show that Ea cannot be a
subbundle of a fixed vector bundle E for all a ≥ 0.

Theorem 1.3 enables us to construct a subset of a Grassmannian that
parameterizes all the ideal sheaves with Hilbert polynomial P . Let
Y ⊂ Pn be a closed subscheme with Hilbert polynomial P . Choose
k ≥ mP . By Theorem 1.3 (2), IY (k) is generated by global sections.
Consider the exact sequence

0→ IY (k)→ OPn(k)→ OY (k)→ 0.

This realizes H0(Pn, IY (k)) as a subspace of H0(Pn,OPn(k)). Since
IY (k) is globally generated, this subspace determines IY (k) and hence
IY ) and the subscheme Y . Furthermore, by Theorem 1.3 (1), the higher
cohomology of IY (k) vanishes. Therefore, h0(Pn, IY (k)) = P (k). Since
k depends only on the Hilbert polynomial, we can find a subset of
G(P (k), H0(Pn,OPn(k)) parameterizing subschemes of Pn with Hilbert
polynomial P . Of course, we will need to put a scheme structure on
this subset and show that it represents the Hilbert functor, but we
begin by proving Theorem 1.3.

We first introduce a definition due to Mumford that streamlines the
cohomology calculations.

Definition 1.4. A coherent sheaf F on Pn is called Castelnuovo-
Mumford m-regular or simply m-regular if H i(Pn, F (m − i)) = 0 for
all i > 0.

Exercise 1.5. Show that OPn(a) is m-regular for all m ≥ −a.

Exercise 1.6. Show that the ideal sheaf of a rational normal curve is
m-regular for all m ≥ 1. Show that the ideal sheaf of a smooth, elliptic
curve of degree d in Pd−1 is m-regular for all m ≥ 3.

Exercise 1.7. Let C be a canonically embedded smooth curve of genus
g in Pg−1. Show that the ideal sheaf of C is m-regular for m ≥ 4.

The following proposition is the main technical tool in the proof of
Theorem 1.3.

Proposition 1.8. If F is an m-regular coherent sheaf on Pn, then

(1) hi(Pn, F (k)) = 0 for i > 0 and k + i ≥ m.
(2) F (k) is generated by global sections if k ≥ m.
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(3) H0(Pn, F (k)) ⊗ H0(Pn,O(1)) → H0(Pn, F (k + 1)) is surjective
if k ≥ m.

Proof. The proof proceeds by induction on the dimension n. When
n = 0, the result is clear. Take a general hyperplane H defined by a
global section s of OPn(1) and consider the natural exact sequence

0→ F (k − 1)→ F (k)→ FH(k)→ 0

obtained by multiplication by s. When k = m− i, the associated long
exact sequence of cohomology gives that

H i(F (m− i))→ H i(FH(m− i))→ H i+1(F (m− i− 1)).

In particular, if F is m-regular on Pn, then both H i(F (m − i)) =
H i+1(F (m − i − 1)) = 0. We conclude that the sheaf FH on Pn−1 is
also m-regular. Now we can prove (1) by induction on k. Consider the
similar long exact sequence

H i+1(F (m− i− 1)→ H i+1(F (m− i))→ H i+1(FH(m− i)).
H i+1(F (m−i−1) = 0 for i > 0 by the assumption that F is m-regular.
H i+1(FH(m−i)) = 0 for i > 0 by the induction hypothesis.We conclude
that F is m+1 regular. By induction on k, F is k-regular for all k > m.
This proves (1).

Consider the commutative diagram

H0(F (k − 1))⊗H0(OPn(1))
u−→ H0(FH(k − 1))⊗H0(OH(1))

↓ g ↓ f
H0(F (k − 1))

t−→ H0(F (k))
v−→ H0(FH(k))

When k = m+1, by the regularity assumption, the map u is surjective.
The map f is surjective by induction on dimension. It follows that v◦g
is also surjective. Notice that the image of H0(F (k−1)) under the map
t is contained in the image of g. It follows that g has to be surjective
and we conclude (3).

Part (2) of the theorem is a straightforward consequence of (3). �

Proof of Theorem 1.3. By Proposition ??, Theorem 1.3 will be proved
if we can show that the ideal sheaves of proper subchemes of Pn with
Hilbert polynomial P are mP -regular for an integer mP depending only
on P . We prove this claim by induction on the dimension n. Choose a
general hyperplane H and consider the exact sequence

(∗) 0→ I(m)→ I(m+ 1)→ IH(m+ 1)→ 0.

IH is a sheaf of ideals so we may use induction on dimension.
4



Assume the Hilbert polynomial P is given by

P (m) =
n∑
i=0

ai

(
m

i

)
.

We then have

χ(IH(m+ 1)) = χ(I(m+ 1))− χ(I(m))

=
n∑
i=0

ai

((
m+ 1

i

)
−
(
m

i

))

=
n−1∑
i=0

ai+1

(
m

i

)
By the induction hypothesis, there exists an integer m1 depending

only on the Hilbert polynomial of IH such that I is m1-regular for every
ideal sheaf with the same Hilbert polynomial. The integer m1 depends
only on the coefficients a1, . . . , an of the Hilbert polynomial P . The
long exact sequence associated to the short exact sequence (∗)
H i−1(IH(m+ 1))→ H i(I(m))→ H i(I(m+ 1))→ H i(IH(m+ 1))

shows that if m ≥ m1− i and i ≥ 2, then H i(Pn, I(m)) ∼= H i(Pn, I(m+
1)). By Serre’s theorem, H i(Pn, I(k)) = 0 for i > 0 and k sufficiently
large. We conclude that H i(Pn, I(k)) = 0 for k ≥ m1 − i and i ≥ 2
since these groups are all isomorphic in this range and vanish for k
sufficiently large. When i = 1, we can only conclude that the map

H1(Pn, I(m))→ H1(Pn, I(m+ 1))

is surjective for m ≥ m1 − 1. If this map is an isomorphism for some
m′, then it follows that it is an isomorphism for m ≥ m′ and by the
same argument as for i ≥ 2 the groups vanish. Hence, we can assume
that h1(I(m)) is a strictly decreasing function for m ≥ m1 − 1. Hence
H1(Pn, I(m)) = 0 for m ≥ h1(Pn, I(m1 − 1)). We conclude that I is
m1 + h1(I(m1 − 1))-regular. So far our argument did not use that I
is an ideal sheaf. We need this assumption to bound h1(I(m1 − 1)).
Using the exact sequence

0→ I(m)→ OPn(m)→ OZ(m)→ 0,

we get

h1(I(m1 − 1)) = h0(I(m1 − 1))− χ(I(m1 − 1))

≤ h0(OPn(m1 − 1))− χ(I(m1 − 1)).

This bound clearly depends only on the Hilbert polynomial P ; hence
concludes the proof of Theorem 1.3. �
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1.3. Endowing the Hilbert scheme with a scheme structure.
In the previous subsection, we have given an injection from the set
of subshemes of Pn with Hilbert polynomial P to the Grassmannian
G(P (m), H0(Pn,OPn(m))) for any m ≥ mP by sending the subscheme
to the P (m)-dimensional subspace H0(Pn, I(m)) of H0(Pn,OPn(m))).
This subspace uniquely determines the subscheme. We now need to
show that the image has a natural scheme structure and that this
subscheme represents the Hilbert functor. For this purpose we will use
flattening stratifications.

Definition 1.9. A stratification of a scheme S is a finite collection
S1, . . . , Sj of locally closed subschemes of S such that

S = S1 t · · · t Sj
is a disjoint union of these subschemes.

Theorem 1.10. Let F be a coherent sheaf on Pn×S. Let S and T be
Noetherian schemes. There exists a stratification of S such that for all
morphisms f : T → S, (1× f)∗F to Pn × T is flat over T if and only
if the morphism factors through the stratification.

The stratification produced in Theorem ?? is called the flattening
stratification. We will now sketch a proof of Theorem ?? following
Lecture 8 in [Mum2].

Sketch of the proof of Theorem ??. First assume that n = 0. Let F be
a sheaf on S. Since the sheaf f ∗F is flat on T if and only if it is locally
free over T , we have to find a stratification of S such that over each
stratum F is locally free. Let k(s) denote the residue field at s ∈ S.
For s ∈ S, let

e(s) = dimk(s)(Fs ⊗Os k(s)).

Let s ∈ S be a point with e(s) = e. Pick a basis of Fs ⊗Os k(s). Then

in a sufficiently small neighborhood U of s, the natural map OeS
φ→ F

is surjective and the kernel of φ may be assumed to be generated by
global sections over U . We thus get an exact sequence

OfS
ψ→ Oes

φ→ F → 0.

The dimension function e(s) is upper semi-continuous. Therefore, the
sets Se = {s ∈ S | e(s) = e} are locally closed. Furthermore, Se ∩ U
is endowed with a natural scheme structure defined by requiring the
entries ψi,j to vanish. Now it is clear that f ∗F is locally free on T if
and only if f factors through the stratification given by Se.

6



The strategy is to reduce the general case to this case. To achieve
this reduction first observe that only finitely many polynomials occur
as the Hilbert polynomials of Fs. This follows from generic flatness:
Let f : X → Y be a morphism of schemes with Y integral. Let
F be a sheaf over X. Then F is flat over a Zariski open set U ⊂
Y . By Noetherian induction, it follows that Y can be stratified into
finitely many locally closed sets so that over each set F is flat. Hence
only finitely many polynomials occur as Hilbert polynomials of Fs. In
particular, by Theorem 1.3, we can choose a uniform m such that for
all k ≥ m the higher cohomology of Fs(k) vanishes.

Exercise 1.11. Prove generic flatness by carrying out the following
steps.

(1) Reduce to the case when Y = Spec(A), X = Spec(B), where B
is an A-algebra and F = M̃ for a B module M .

(2) Prove that it suffices to show that there is an element f ∈ A such
that Mf is a free Af -module. (Note, in fact, that this argument
will show generic local freeness and not just generic flatness.)
In the rest of the exercise, prove this statement by a series of
reductions.

(3) By using composition series, reduce to the case M = B and B
is an integral domain.

(4) Pass to the fraction fields of A and B and use induction on the
transcendence degree to conclude the proof.

Consider the diagram

Pn × T 1×f→ Pn × S
↓ q ↓ p

T
f→ S

Notice that (1 × f)∗F is flat over T if and only if q∗(1 × f)∗F(k) is
locally free for k ≥ m. We have thus reduced checking the flatness to
checking that a collection of sheaves is locally free.

By the first step of the proof, we know how to stratify S so that
each of the sheaves F(k) are locally free over S. The apparent problem
now is that we have to stratify S so that infinitely many sheaves are
simultaneously locally free. Given two stratifications S = tYi = tZj,
we can define a common refinement of the two stratifications S = tSi,j
by letting Si,j = Yi ∩Zj, where the intersection is the scheme theoretic
intersection of Yi and Zj. The flattening stratification is the simulta-
neous common refinement of all the stratifications of F(k) for k ≥ m.
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More precisely, let Y k
e be the stratum of the flattening stratification

of F(k) on which F(k) is locally free of rank e. Let P1, . . . , Pr be the
polynomials that occur as the Hilbert polynomials of Fs. Then set

Si =
∞⋂
k=m

Y k
Pi(k).

The intersection defining Si stabilizes after finitely many k. First, the
support of Si is determined by taking the intersection of at most n+ 1
of the schemes Y k

Pi(k):

∞⋂
k=m

Supp(Y k
Pi(k)) =

m+n⋂
k=m

Supp(Y k
Pi(k)).

This follows by noting that the Hilbert polynomials Pj have degree at
most n. If the values of Pj and Pl agree at n+ 1 points, then Pj = Pl.
Then we have a descending chain of ideals with fixed support, so the
scheme structures also stabilize after finitely many k. We thus obtain a
well-defined stratification of S into locally closed subschemes on which
F(k) are all simultaneously locally free. This gives us the flattening
stratification. �

The flattening stratification allows us to put a scheme structure on
the image of our map to the Grassmannian. More precisely, consider
the incidence correspondence

I ⊂ Pn ×G(P (mP ), H0(Pn,OPn(mP ))).

The incidence correspondence has two projections

π1 : I → Pn

and

π2 : I → G(P (mP ), H0(Pn,OPn(mP ))).

For the rest of this section we will abbreviateG(P (mP ), H0(Pn,OPn(mP )))
simply by G. π∗2T (−mP ) where T is the tautological bundle on G is
an idea sheaf of OPn×G. Let us denote the corresponding subscheme
by Y . The flattening stratification of OY over G gives a subscheme
HP of G corresponding to the Hilbert polynomial P . (Note that this
is the scheme structure that we put on the set we earlier obtained.)
The claim is that HP represents the Hilbert functor and the universal
family is the restriction W of Y to the inverse image of HP .

Suppose we have a subscheme X ⊂ Pn × S mapping to S via f and
flat over S (and suppose the Hilbert polynomial is P ). We obtain an
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exact sequence

0→ f∗IX(mP )→ f∗OPn×S(mP )→ f∗OX(mP )→ 0.

By the universal property of the Grassmannian G, this induces a map
g : S → G. Since

f∗IX(m) = g∗π2∗IY (m)

for m sufficiently large, we see that (1 × g)∗OY is flat with Hilbert
polynomial P , hence g factors through HP by the definition of the flat-
tening stratification. Moreover, X is simply S ×HP

W . This concludes
the construction of HilbP (Pn/S).

Exercise 1.12. Verify the details of the above construction.

So far we have constructed the Hilbert scheme as a quasi-projective
subscheme of the Grassmannian. To prove that it is projective it suf-
fices to check that it is proper. This is done by checking the valuative
criterion of properness. This follows from the following proposition
[Ha] III.9.8.

Proposition 1.13. Let X be a regular, integral scheme of dimension
one. Let p ∈ X be a closed point. Let Z ⊂ PnX−p be a closed subscheme

flat over X − p. Then there exists a unique closed subscheme Z ∈ PnX
flat over X, whose restriction to PnX−p is Z.

Exercise 1.14. Deduce from the proposition that the Hilbert scheme
we constructed is projective.

Exercise 1.15. For a projective scheme X/S construct HilbP (X/S)
as a locally closed subscheme of HilbP (Pn/S).

Exercise 1.16. Suppose X and Y are projective schemes over S. As-
sume X is flat over S. Let Hom(X, Y ) be the functor that associates
to any S scheme T the set of morphisms

X ×S T → Y ×S T.

Using our construction of the Hilbert scheme and noting that a mor-
phism may be identified with its graph construct a scheme that repre-
sents the functor Hom(X, Y ).

1.4. The local structure of the Hilbert scheme. In this subsec-
tion, we determine the Zariski tangent space to the Hilbert scheme
HilbP (X) at a subscheme Y . The best reference for this section is [K].
Kollár also discusses at length obstruction groups. Unfortunately, we
will not cover this very important topic here.
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Theorem 1.17. Let X be a projective scheme over a field k and
Y ⊂ X be a closed subscheme with Hilbert polynomial P , then the
Zariski tangent space to HilbP (X) at [Y ] is naturally isomorphic to
HomY (IY /I

2
Y ,OY ). In particular, if X and Y are both smooth projec-

tive varieties, then the tangent space to the Hilbert scheme is given by
H0(Y,NY/X) the global sections of the normal bundle of Y in X.

Proof. Let i : Spec(k) → Spec(k[ε]/(ε2)) be the morphism induced by
the natural ring of maps k[ε]/(ε2) → k. The Zariski tangent space to
HilbP (X) at Y is given by morphisms

φ : Spec(k[ε]/(ε2))→ HilbP (X)

such that the image of φ ◦ i is [Y ]. Since the Hilbert functor is repre-
sentable, these morphisms are in one-to-one correspondence with flat
families of schemes over Spec(k[ε]/(ε2)) such that the fiber over the
image of i is Y . We will now characterize such morphisms and show
that they are parameterized by HomY (IY /I

2
Y ,OY ).

We may reduce the calculation to the affine case. Our construction
will then globalize to yield the result. Let X = Spec(A) for a finitely
generated k-algebra A and let Y = Spec(B) with B = A/I for some
ideal I of A. Let Ã = A⊗kk[ε]/(ε2). Let B̃ = Ã/Ĩ, where (Ĩ+εA)/εA =
I. Our task is to characterize B̃ that are flat over k[ε]/(ε2). Flatness
can be checked by considering ideals. The only non-zero proper ideal
of k[ε]/(ε2) is the ideal (ε). Hence B̃ is a flat k[ε]/(ε2)-module if and
only if ε ⊗ B̃ = εB. This holds if and only if εã ∈ Ĩ implies that
ã = εx̃(mod I). We conclude that B̃ is flat over k[ε]/(ε2) if and only
if εA ∩ Ĩ = εI. Given j̃ ∈ Ĩ, then j̃ = i + εa, where a is determined
modulo I. Given i ∈ I, the residue class of a modulo I such that
i + εa ∈ Ĩ is uniquely determined. We see that Ĩ is then determined
by a homomorphism φ : I → A/I. Hence, we can identify the flat
B̃ over k[ε]/(ε2) with HomA(I, B) =Hom(I/I2, B). Globalizing we see
that the Zariski tangent space to the Hilbert scheme at Y is given by
homomorphisms φ : IY /I

2
Y → OY . �

Exercise 1.18. Let Z ⊂ Pn be a complete intersection of hypersurfaces
of degree d1, . . . , dr. Describe the Zariski tangent space to the Hilbert
scheme at the point Z and calculate its dimension.

2. Examples of Hilbert schemes

In this section, we will give explicit examples of Hilbert schemes.
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2.1. Hilbert schemes of points. Let X be a smooth projective va-
riety. We begin by considering Hilbert schemes of zero dimensional
subschemes of X. Let P = n be a positive integer. Hilbn(X) can be a
very complicated scheme even when X is Pn.

Exercise 2.1. Show that Hilb1(X) is isomorphic to X.

The n-th symmetric product X(n) of X is the quotient of the product
Xn under the action of the symmetric group Sn interchanging the
factors of Xn.

Exercise 2.2 (Zero dimensional subschemes on a smooth curve). Show
that if C is a smooth curve, then Hilbn(C) is isomorphic to C(n). In
particular, conclude that Hilbn(P1) ∼= Pn.

Exercise 2.3. Suppose C is an irreducible curve with a node. Describe
Hilb2(C). Is Hilb2(C) isomorphic to C(2)?

Example 2.4 (Zero dimensional subschemes on a smooth surface).
The Hilbert scheme of points on smooth surfaces provide beautiful
examples of smooth projective varieties.

Theorem 2.5 (Fogarty). Let X be a smooth, projective surface over an
algebraically closed field k. Then Hilbn(X) is a smooth, irreducible pro-
jective variety of dimension 2n. The Hilbert scheme admits a Hilbert-
Chow morphism

hc : Hilbn(X)→ X(n).

Hilbn(X) is a small resolution of the symmetric product X(n).

Example 2.6 (Iarrabino’s Examples). In the previous examples, we
saw that the Hilbert scheme of points on smooth curves and surfaces
behave in the expected manner. These examples are the exception
rather than the rule. Let X be a smooth projective variety of dimen-
sion d ≥ 3. Then Hilbn(X) contains an irreducible component whose
general point parameterizes a scheme Z consisting of n-reduced distinct
points.

Exercise 2.7. Show that the locus inHilbn(X) parameterizing schemes
with n-reduced distinct points is smooth and has dimension dn. Show
that this locus is isomorphic to the complement of the diagonals in the
symmetric product X(n). Deduce that the closure of this locus is an
irreducible component of Hilbn(X). We will call this component the
expected component.

Even Hilbn(P3) may have components other than the expected com-
ponent. One way to obtain other components of Hilbn(P3) is to use
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Iarrabino’s construction. It is more convenient to work with Hilbn(A3).
The schemes obtained by this construction are supported at one point.
Let I be the ideal in k[x, y, z] generated by mk and an r dimensional
subspace W of homogeneous polynomials of degree k − 1, where m
is the maximal ideal at the origin. Then the support of I is clearly
the origin. The Hilbert polynomial of I is the dimension of the vector
space k[x, y, z]/I. We can choose a basis for k[x, y, z]/I by taking all
monomial of degree less than k − 1 and a basis complementary to W
among polynomials of degree k−1. Hence the dimension of k[x, y, z]/I
is

n =
k−2∑
i=0

(i+ 2)(i+ 1)

2
+
k(k + 1)

2
− r.

We thus get a point in Hilbn(A3). We can vary I by changing the
subspace W and the supporting point. Hence, this locus has dimension

at least dimG(r, k(k+1)
2

)+3 = r(k(k+1)
2
−r)+3. When k is large enough,

this dimension can become larger than 3n, thus, producing irreducible
components of Hilbn(A3) of dimension larger than that of the expected
component. For example, let k = 8 and r = 24. Then we get n = 96.
The dimension of the expected component is 288. Whereas, the locus
we have constructed has dimension at least 291. We conclude that
Hilb96(A3) is reducible.

Exercise 2.8. Let X be a smooth, projective variety of dimension d.
Assume that Hilbn(X) has an irreducible component other than the
expected component of dimension at least dn. Show that for m ≥
n, Hilbm(X) is reducible. In particular, conclude that Hilbn(X) is
reducible for any threefold X if n ≥ 96.

Exercise 2.9. Use Iarrabino’s construction to conclude that Hilbn(X)
is reducible for any fourfold if n ≥ 21, any five fold if n ≥ 11 and any
six fold if n ≥ 10. Deduce that Hilbn(X) is reducible if dim(X) ≥ 6
and n ≥ 10.

Example 2.10. The Hilbert scheme of points Hilbn(X) may also have
components that have smaller dimension than the dimension of the
expected component. Consider Hilb8(A4). The expected component
in this case has dimension 32. However, this Hilbert scheme has an-
other component of dimension 25. Consider an ideal I generated by
m3 and a 7-dimensional subspace W of quadratic polynomials. Then
dim(k[x, y, z, w]/I) = 25. The dimension of the locus of ideals of this
form is dim(G(7, 10)) + 4 = 25. Of course, it could be that this locus
is contained in a larger dimensional component, possibly the expected
component. To see that this is not the case, it suffices to show that the
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Zariski tangent space to Hilb8(A4) at a general point has dimension
25. It then follows that this locus forms an irreducible component.

Exercise 2.11. Let W be a general 7-dimensional subspace of qua-
dratic polynomials. Show that the Zariski tangent space to Hilb8(A4)
has dimension 25. It is probably best to do this exercise using a com-
puter package such as Macaulay2. Use a random polynomial generator
to generate W and then calculate the dimension of the Zariski tangent
space to Hilb8(A4) at I to see that this dimension is 25.

Exercise 2.12. Show thatHilbn(X) is reducible for n ≥ 8 and dim(X) ≥
4.

Remark 2.13. It is known that Hilbn(Am) is irreducible if n ≤ 7.
Hence, when m ≥ 4, Hilbn(Am) is reducible if and only if m ≥ 8. The
techniques of this subsection can be optimized to show that Hilbn(A3)
is reducible if n ≥ 78. At present we do not know whether Hilbn(A3)
is irreducible or not when 9 < n < 78. More importantly, currently
there does not seem to be a good way of testing whether a given zero
dimensional scheme is in the closure of the expected component.

2.2. Hilbert schemes of linear spaces and hypersurfaces.

Example 2.14 (The Grassmannian). Let

Pr(m) =

(
m+ r

r

)
be the Hilbert polynomial of a linear space Pr ⊂ Pn. By Bezout’s
Theorem, any subscheme of Pn with Hilbert polynomial Pr is a linear
space in Pn. By Exercise ??, HilbPr(Pn) is smooth. By the universal
property of the Grassmannian G(r, n) = G(r + 1, n + 1), HilbPr(Pn)
admits a morphism

φ : HilbPr(Pn)→ G(r, n).

The morphism φ is a bijection on points, therefore, by Zariski’s Main
Theorem, an isomorphism. We conclude that HilbPr(Pn) ∼= G(r, n).

Exercise 2.15 (The Hilbert scheme of hypersurfaces). Let

Pd,n(m) =

(
m+ n

n

)
−
(
m+ n− d

n

)
.

Show that any subscheme of Pn with Hilbert polynomial Pd,n is a
hypersurface of degree d in Pn. In particular, the ideal of such a
scheme is generated by a single polynomial of degree d. Prove that
the Hilbert scheme HilbPd,n

(Pn) is smooth and irreducible. Conclude
13



that HilbPd,n
(Pn) is isomorphic to P(n+d

d )−1 parameterizing homoge-
neous polynomials of degree d in n+ 1 variables modulo scalars.

Example 2.16 (The orthogonal Grassmannian). Let V be an n dimen-
sional vector space. Let Q be a non-degenerate quadratic form on V . A
subspace W of V is called isotropic with respect to Q if the restriction
of Q vanishes on W . Let the orthogonal Grassmannian OG(k, n) be
the variety parameterizing k-dimensional Q-isotropic subspaces of V .

Exercise 2.17. Show that OG(k, n) is a smooth, projective variety of
dimension

dim(OG(k, n)) =
k(2n− 3k − 1)

2
.

Show that every irreducible component of OG(k, n) is homogeneous
under the natural action of SO(n).

Geometrically, Q = 0 defines a smooth, quadric hypersurface in PV .
OG(k, n) parameterizes linear spaces Pk−1 contained in the hypersur-
face Q = 0. Let PW be a linear space on Q = 0. Consider the following
short exact sequence of cohomology

0→ NPW/Q → NPW/PV → OPV (2)|PW → 0.

Since NPW/PV ∼= OPW (1)⊕n−k and h1(NPW/Q) = 0, by the long exact
sequence of cohomology, we conclude that

h0(PW,NPW/Q) =
k(2n− 3k − 1)

2
.

It follows that the Hilbert scheme HilbPk−1
(Q) is smooth, where Pk−1

is the Hilbert polynomial of a linear space Pk−1.

Exercise 2.18. Show that HilbPk−1
(Q) ∼= OG(k, n).

We now specialize to the case n = 2k. OG(k, 2k) has two connected
components. The cohomology group H2k−2(Q,Z) ∼= Z ⊕ Z. The two
components of OG(k, 2k) are distinguished by the cohomology class
of the linear spaces they parameterize. We conclude that the Hilbert
scheme HilbPk−1

(Q) is not connected for a smooth quadric hypersurface
Q ⊂ P2k−1.

The previous example is in sharp contrast to Hilbert schemes of
subspaces of Pn. A celebrated theorem of Hartshorne asserts that the
Hilbert schemes of subschemes in Pn are always connected.

Theorem 2.19 (Hartshorne’s Theorem). Let P be the Hilbert polyno-
mial of a subscheme of Pn. Then HilbP (Pn) is connected.

14



Example 2.20 (The Fano scheme of linear spaces). Let X be a hyper-
surface of degree d in Pn. Let Pr be the Hilbert polynomial of a linear
space of dimension r. HilbPr(X) is classically called the Fano scheme
of r-dimensional linear spaces.

Exercise 2.21. • Let X be a smooth cubic hypersurface in Pn, n ≥
4. Show that the Fano scheme of lines Hilbm+1(X) is smooth and
irreducible of dimension 2n− 6.

• Let X be a general hypersurface in Pn of degree d ≤ 2n − 3. Show
that the Fano scheme of lines Hilbm+1(X) is smooth and of dimension
2n− 3− d.

• Let X be the Fermat quartic threefold defined by Z4
0 + Z4

1 + Z4
2 +

Z4
3 +Z4

4 = 0. Show that every line on X is contained in one of the hy-
perplane sections Zi = ωZj where ω is a fourth root of unity. Conclude
that the Fano scheme of lines on X has 40 irreducible components. Cal-
culate the class of the Fano scheme of lines on X in the Grassmannian
G(1, 4). Show that the automorphism group permutes these irreducible
components. Conclude that each of these irreducible components are
everywhere non-reduced. This example should convince you that the
scheme structure on a Hilbert scheme can be very subtle.

• Find a smooth hypersurface X of degree d > n for which

dim(Hilbm+1(X)) > 2n− 3− d.

Problem 2.22. There are many open problems even for the Fano
scheme of lines on hypersurfaces. For example, even the dimensions of
these schemes are not always known. Let X be a smooth hypersurface
in Pn of degree d ≤ n. Then a the Debarre-de Jong Conjecture asserts
that the dimension of Hilb2m+1(X) is 2n−d−3. The previous exercise
asks you to verify this statement for a general hypersurface. However,
the conjecture remains open for every smooth hypersurface. Prove the
conjecture for d ≤ 5. By results of Beheshti and Landsberg, Robles,
the conjecture is known for d = 6. Currently it is open for d > 6.

Exercise 2.23. Let X be a general hypersurface of degree d. Deter-
mine the dimension of HilbPr(X).

2.3. Some Hilbert schemes of curves. We now turn to some ex-
amples of Hilbert schemes of curves in projective space.

Example 2.24 (The Hilbert scheme of conics in P3). In this example,
we analyze the Hilbert scheme Hilb2m+1(P3). The Hilbert polynomial
of a smooth conic curve is 2m + 1. We need to determine what other
subschemes of P3 have the same Hilbert polynomial. Towards this aim

15



let’s classify double line structures. Without loss of generality we may
assume that the support of the line L is given by x = y = 0. The ideal
of the double line must contain I2

L. However, note that the Hilbert
polynomial of the ideal < x2, xy, y2 > is 3m + 1. Therefore, the ideal
must contain at least one more polynomial. This polynomial modulo
I2
L maybe chosen of the form xF (z, w) + yG(z, w). If the degrees of
F and G are d, then the ideal < x2, xy, y2, xF (z, w) + yG(z, w) > has
Hilbert polynomial 2m + 1 + d. We conclude that a double line with
Hilbert polynomial 2m+ 1 is planar.

Exercise 2.25. Prove that any subscheme of P3 with Hilbert polyno-
mial 2m+ 1 is a complete intersection of a linear polynomial H and a
quadratic polynomial Q.

Exercise 2.26. Prove that the ideal of any double line of arithmetic
genus−d without embedded points has the form< x2, xy, y2, xF (z, w)+
yG(z, w) > for some polynomials F (z, w), G(z, w) of degree d.

Exercise 2.27. Show that Hilb2m+1(P3) is smooth and irreducible of
dimension 8. Let U be the tautological bundle of (P3)∗. Use the uni-
versal property of the Hilbert scheme to show that P(Sym2U∗) admits
a morphism to Hilb2m+1(P3). Using the previous exercise, show that
this morphism is a bijection on points. Use Zariski’s Main Theorem to
conclude that

Hilb2m+1(P3) ∼= P(Sym2U∗).

We can use the Hilbert scheme of conics to solve enumerative ques-
tions about conics. Suppose now that the ground field is C.

Question 2.28. How many conics in P3 intersect 8 general lines in P3?

As in the case of Schubert calculus, we can try to calculate this
number as an intersection in the cohomology ring. The cohomology
ring of a projective bundle over a smooth variety is easy to describe in
terms of the Chern classes of the bundle and the cohomology ring of
the variety.

Theorem 2.29. Let E be a rank n vector bundle over a smooth, pro-
jective variety X. Suppose that the Chern polynomial of E is given by∑
ci(E)ti. Let S be the tautological line bundle of PE. Let ζ = c1(S∗).

The cohomology of PE is isomorphic to

H∗(PE) ∼=
H∗(X) [ζ]

< ζn + ζn−1c1(E) + · · ·+ cn(E) = 0 >
16



Theorem ?? allows us to compute the cohomology ring ofHilb2n+1(P3).
Recall that U∗ on P3∗ is a rank 3 vector bundle with Chern polynomial

c(U∗) = 1 + h+ h2 + h3.

Using the splitting principle, we can assume that c(U∗) splits into three
linear factors

(1 + x)(1 + y)(1 + z).

Then the Chern polynomial of Sym2(U∗) is given by

(1 + 2x)(1 + 2y)(1 + 2z)(1 + x+ y)(1 + x+ z)(1 + y + z).

Multiplying this out and expressing it interms of the elementary sym-
metric polynomials in x, y, z, we see that

c(Sym2(T ∗)) = 1 + 4h+ 10h2 + 20h3.

It follows that the cohomology ring of Hilb2n+1(P3) is given by

H∗(Hilb2n+1(P3)) ∼=
Z[h, ζ]

< h4, ζ6 + 4hζ5 + 10h2ζ4 + 20h3ζ3 >

The class of the locus of conics interseting a line l is given by 2h + ζ.
Since this locus is a divisor, its class can be checked by a calculation
away from codimension at least 2. Consider the locus of planes in P3∗

that do not contain the line l. Over this locus, there is a line bundle
that associates to each point (H,Q) on Hilb2n+1(P3) the homogeneous
quadratic polynomials modulo those that vanish at H ∩ l. This line
bundle is none other than the pull-back of OP3∗(2). The tautological
bundle over Hilb2n+1(P3) maps to this bundle by evaluation. The locus
where the evaluation vanishes is the locus of conics that intersect l.
Hence, the class of the locus of conics that intersect l is the difference
of the first chern classes of π∗(c1(OP3∗(2)))− c1(U) = 2h+ ζ.

Exercise 2.30. Verify that the locus of conics intersecting a line l has
class 2h+ ζ by the method of undetermined coefficients. Let A be the
class of a pencil of conics contained in a fixed plane. Let B be the class
of conics obtained by intersecting a fixed quadric surface by a pencil
of planes. Show that A · h = 0, A · ζ = 1 and B · h = 1, B · ζ = 0. In
other words, A,B give a dual basis to h, ζ. Use A,B to calculate the
class of conics intersecting the line l.

Finally, to find the number of conics that intersect 8 general lines,
we compute (2h + ζ)8 using the presentation of the cohomology ring.
Note that ζ5h3 = 1 since h3 corresponds to a point on P3∗ and ζ
restricted to a fiber of π : PSym2U∗ → P3∗ is the class of a hyperplane.
Multiplying the relation ζ6 + 4hζ5 + 10h2ζ4 + 20h3ζ3 = 0 by h2 and
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solving, we see that ζ6h2 = −4 Continuing to solve inductively, we
conclude that ζ7h = 6, ζ8 = −4. Finally, an easy calculation shows
that (2h+ ζ)8 = 92.

We can invoke Kleiman’s Transversality Theorem to deduce that
there are 92 smooth conics intersecting 8 general lines in P3. Hilb2m+1(P3)
is not a homogeneous variety. However, PGL(4) has a dense open orbit
on Hilb2m+1(P3) because any two non-singular conics in P3 are projec-
tively equivalent. Since any conic intersecting 8 general lines is non-
singular, by Kleiman’s Transversality Theorem applied to the locus of
non-singular conics in Hilb2m+1(P3), we conclude that the intersections
of the cycles are transverse.

Exercise 2.31. Show that given 8 general lines the only conics inter-
secting all 8 are smooth conics.

Exercise 2.32. Calculate the number of conics that intersect 8 − 2i
general lines and contain i general points for 0 ≤ i ≤ 3.

Exercise 2.33. Calculate the class of the locus of conics that are tan-
gent to a plane in P3. Find the number of conics that are tangent to a
general plane and intersect 7 general lines.

Exercise 2.34. Generalize the previous discussion to conics in Pn.
Show that Hilb2m+1(Pn) is isomorphic to PSym2(U∗), where U is the
tautological bundle of G(2, n).

Exercise 2.35. Calculate the cohomology ring of Hilb2m+1(P4). De-
termine the number of conics that intersect 11−2i−3j general planes,
i general lines and j general points in P4.

Exercise 2.36. Let Q ⊂ P5 be a smooth quadric hypersurface. Show
that Hilb2m+1(Q) is the blow-up of the Grassmannian G(3, 6) along
the orthogonal Grassmannian OG(3, 6)

Hilb2m+1(Q) ∼= BlOG(3,6)G(3, 6).

In particular, conclude that the rank of the Picard group ofHilb2m+1(Q)
is three. Show that the Picard group is generated by OG(3,6)(1) and
the two exceptional divisors E1, E2 of the blow-up lying over the two
connected components of OG(3, 6).

More generally, let Q ⊂ Pn be a smooth quadric hypersurface. Show
that

Hilb2m+1(Q) ∼= BlOG(3,n+1)G(3, n+ 1).

Conclude that when n > 5, the Picard group of Hilb2m+1(Q) has rank
two.

18



References

[Ab] S. S. Abhyankar. Resolution of singularities of arithmetical surfaces. In Arithmetical Alge-
braic Geometry (Proc. Conf. Purdue Univ., 1963), pages 111–152. Harper & Row, New York,

1965.

[DM] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. IHES
Publ. Math. 36(1969), 75–110.

[Ed] D. Edidin. Notes on the construction of the moduli space of curves. In Recent progress in

intersection theory (Bologna, 1997), Trends Math., pages 85–113. Birkhäuser Boston, Boston,
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