
THE MODULI SPACE OF CURVES

In this section, we will give a sketch of the construction of the moduli
space Mg of curves of genus g and the closely related moduli space
Mg,n of n-pointed curves of genus g using two different approaches.
Throughout this section we always assume that 2g − 2 + n > 0. In
the first approach, we will embed curves in a projective space PN using
a sufficiently high power n of their dualizing sheaf. Then a locus in
the Hilbert scheme parameterizes n-canonically embedded curves of
genus g. The automorphism group PGL(N + 1) acts on the Hilbert
scheme. Using Mumford’s Geometric Invariant Theory, one can take
the quotient of the appropriate locus in the Hilbert scheme by the
action of PGL(N + 1) to construct Mg. In the second approach, one
first constructs the moduli space of curves as a Deligne-Mumford stack.
One then exhibits an ample line bundle on the coarse moduli scheme
of this stack.

1. Basics about curves

We begin by collecting basic facts and definitions about stable curves.
A curve singularity (C, p) is called a node if locally analytically the
singularity is isomophic to the plane curve singularity xy = 0. A curve
C is called at-worst-nodal or more simply nodal if the only singularities
of C are nodes.

The dualizing sheaf ωC of an at-worst-nodal curve C is an invertible
sheaf that has a simple description. Let ν : Cν → C be the nor-
malization of the curve C. Let p1, . . . , pδ be the nodes of C and let
{ri, si} = ν−1(pi). Then ωC associates to an open subset U of C, ra-
tional differentials η on ν−1(U) having at worst simple poles at ri, si
lying over the points pi ∈ U such that

Resri(η) + Ressi
(η) = 0

for every pair ri, si. If C is a connected, nodal curve of arithmetic genus
g, then ωC has degree 2g − 2 and h0(C, ωC) = g.

Definition 1.1. A stable curve C of genus g is a connected, complete,
at-worst-nodal curve of arithmetic genus g such that ωC is ample.

Exercise 1.2. Let C be a connected, complete, at-worst-nodal curve
of arithmetic genus g ≥ 2. Show that the following three conditions
are equivalent.
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(1) ωC is ample.
(2) If Cν

i is a genus zero component of the normalization of C, then
Cν
i has at least three points mapped to nodes of C by ν.

(3) The automorphism group of C is finite.

Definition 1.3. An n-pointed stable curve (C, p1, . . . , pn) of genus g is
a connected, complete, at-worst-nodal curve C of arithmetic genus g
and n distinct, smooth points p1, . . . , pn ∈ C such that ωC(

∑n
i=1 pi) is

ample. The points pi are called marked points.

An isomorphism between marked curves

(C, p1, . . . , pn) and (C ′, p′1, . . . , p
′
n)

is an isomorphism φ : C → C ′ such that φ(pi) = p′i for 1 ≤ i ≤ n.

Exercise 1.4. Let (C, p1, . . . , pn) be an n-pointed, connected, com-
plete, at-worst-nodal curve of arithmetic genus g such that 2g−2+n >
0. Show that the following three conditions are equivalent.

(1) ωC(
∑n

i=1 pi) is ample.
(2) If Cν

i is a genus zero component of the normalization of C, then
Cν
i has at least three points mapped to nodes or marked points

of C by ν.
(3) The automorphism group of (C, p1, . . . , pn) is finite.

Now we are ready to define several closely related functors.

Definition 1.5. The functorMg associates to every S-scheme X, iso-
morphism classes of families π : C → X such that π is flat of relative
dimension one and for every closed point x ∈ X, π−1(x) is a smooth
curve of genus g.

The functorMg associates to every S-schemeX, isomorphism classes
of families π : C → X such that π is flat of relative dimension one and
for every closed point x ∈ X, π−1(x) is a stable curve of genus g.

The functor Mg,n associates to every S-scheme X, isomorphism
classes of families π : C → X together with n-sections s1, . . . , sn of
π such that π is flat of relative dimension one and for every closed
point x ∈ X, (π−1(x), s1(x), . . . , sn(x)) is a smooth n-pointed curve of
genus g.

Finally, the functor Mg,n associates to every S-scheme X, isomor-
phism classes of families π : C → X together with n-sections s1, . . . , sn
of π such that π is flat of relative dimension one and for every closed
point x ∈ X, (π−1(x), s1(x), . . . , sn(x)) is a stable n-pointed curve of
genus g. In each of these cases, the functor associates to a morphism
f : Y → X of S-schemes, the pull-back family f ∗C.
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Unlike the functors we have studied so far, none of these functors
are representable. The main obstruction to representing Mg is the
existence of curves with non-trivial automorphisms. Let C be a curve
with a non-trivial automorphism φ. Then we can construct an isotrivial
family of curves which is not trivial. Recall that a family π : C →
X is isotrivial if the fibers of π are isomorphic to a fixed curve C.
However, an isotrivial family does not have to be isomorphic to the
trivial family X × C → X given by projection to the first factor.
If the functor were representable by a scheme M , then each family
over X would correspond to a morphism fπ : X → M such that the
family is the pull-back of the universal family over M by the morphism
fπ. However, both for the isotrivial family and the trivial family the
morphism induced from X to M has to be the constant morphism with
image the point representing the isomorphism class of C. Therefore,
Mg cannot be representable. The next example explicitly constructs
an isotrivial family which is not isomorphic to a product.

Example 1.6. Fix a hyperelliptic curve C of genus g. Let τ denote the
hyperelliptic involution of C. Let S be any variety with a fixed-point-
free involution. For concreteness, we can take S to be a K3-surface with
a fixed point free involution i such that S/i is an Enriques surface E. If
you would like to write down explicit equations, let C be the normaliza-
tion of the plane curve defined by the equation y2 = p(x), where p(x) is
a polynomial of degree 2g+2 with no repeated roots. The hyperelliptic
involution is given by (x, y) 7→ (x,−y). Let Q1, Q2, Q3 be three general
ternary quadratic forms. Let the K3-surface S be defined by the van-
ishing of the three polynomials Qi(x0, x1, x2) +Qi(x3, x4, x5) = 0 with
the involution that exchanges the triple (x0, x1, x2) with (x3, x4, x5).
Consider the quotient of C ×S by the fixed-point free involution τ × i.
The quotient is a non-trivial family over the Enriques surface E; how-
ever, every fiber is isomorphic to C. If Mg were finely represented by
a scheme, then this family would correspond to a morphism from E to
it. However, this morphism would have to be constant since the moduli
of the fibers is constant. The trivial family would also give rise to the
constant family. Hence, Mg cannot be finely represented.

If π : C → S is a stable curve of genus g over a scheme S, then C
has a relative dualizing sheaf ωC/S with the following properties

(1) The formation of ωC/S commutes with base change.

(2) If S = Spec k where k is an algebraically closed field and C̃ is
the normalization of C, then ωC/S may be identified with the

sheaf of meromorphic differentials on C̃ that are allowed to have
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simple poles only at the inverse image of the nodes subject to
the condition that if the points x and y lie over the same node
then the residues at these two points must sum to zero.

(3) In particular, if C is a stable curve over a field k, thenH1(C, ω⊗nC/k) =

0 if n ≥ 2 and ω⊗nC/k is very ample for n ≥ 3. When n = 3 we

obtain a tri-canonical embedding of stable curves to P5g−6 with
Hilbert polynomial P (m) = (6m− 1)(g − 1).

To see the third property observe that every irreducible component
E of a stable curve C either has arithmetic genus 2 or more, or has
arithmetic genus one but meets the other components in at least one
point, or has arithmetic genus 0 and meets the other components in
at least three points. Since ωC/k ⊗ OE is isomorphic to ωE/k(

∑
iQi)

where Qi are the points where E meets the rest of the curve. Since
this sheaf has positive degree it is ample on each component E of C,
hence it is ample. ωE/k(

∑
iQi) has positive degree on each component,

hence ω1−n
C/k ⊗ OE has no sections for any n ≥ 2. By Serre duality, it

follows that H1(C, ω⊗nC/k) = 0. To show that when n ≥ 3, ω⊗nC/k is very

ample, it suffices to check that ω⊗nC/k separates points and tangents.

Exercise 1.7. Check that when n ≥ 3, ω⊗nC/k separates points and
tangents.

2. The GIT construction of the moduli space

Good references for this section are [HM] Chapter 4, [Mum3], [FKM]
and [Ne]. Explaining the GIT construction in detail would take us too
far afield. Instead we will briefly sketch the main ideas and refer you
to the literature.

2.1. Basics about G.I.T.. An algebraic group G is a group together
with the structure of an algebraic variety such that the multiplication
and inverse maps are morphisms of varieties. An action of an algebraic
group G on a variety X is a morphism f : G × X → X such that
f(gg′, x) = f(g, f(g′, x)) and f(e, x) = x, where e is the identity of the
group. The stabilizer of a point x ∈ X is the closed subgroup of G
fixing x. The orbit of a point x under G is the image of f restricted to
G× {x}.

For our purposes we can always restrict attention to SL(n), GL(n)
or PGL(n). An algebraic group which is isomorphic to a closed sub-
group of GL(n) is called a linear algebraic group. A group is called
geometrically reductive if for every linear action of G on kn and every
non-zero invariant point v ∈ kn, there exists an invariant homogeneous
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polynomial that does not vanish on v. The group is called linearly
reductive if the homogeneous polynomial may be taken to have de-
gree one. Finally a group is called reductive if the maximal connected
normal solvable subgroup is isomorphic to a direct product of copies
of k∗. In characteristic zero these concepts coincide. In characteristic
p > 0 a threorem of Haboush guarantees that every reductive group is
geometrically reductive.

The question is to obtain a quotient of a variety under the action of
a reductive group.

Lemma 2.1. Let G be a geometrically reductive group acting on an
affine variety X. Let W1 and W2 be two disjoint invariant closed or-
bits. Then there exists an invariant polynomial f ∈ A(X)G such that
f(W1) = 0 and f(W2) = 1.

Proof. Pick any h ∈ A(X) such that h(W1) = 0 and h(W2) = 1.
Consider the subspace spanned by hg for g ∈ G. This is a finite di-
mensional subspace. To see this consider the function H(g, x) = h(gx)
in A(G × X) ∼= A(G) ⊗ A(X). We can write H(g, x) as a finite sum∑

i Fi ⊗ Hi in A(G) ⊗ A(X) of the generators of A(G) and A(X).
Hence the subspace spanned by hg for g ∈ G is contained in the sub-
space spanned by the Hi. Pick a basis for this subspace h1, . . . , hn.
We obtain a rational representation of G on this subspace, hence a
linear action on kn making the morphism π : X → kn given by
π(x) = (h1(x), . . . , hn(x)) into a G-morphism. Since G is geometrically
reductive there is an invariant polynomial f that has the value zero on
π(W1) and the value 1 on π(W2). f ◦ π is the desired polynomial. �

The main theorem for quotients of reductive group actions on affine
varieties is the following:

Theorem 2.2. Let G be a reductive group acting on an affine variety
X. Then there exists a quotient affine variety Y and a G-invariant,
surjective morphism φ : X → Y such that

(1) For any open set U ⊂ Y , the ring homomorphism

φ∗ : A(U)→ A(φ−1(U))

is an isomorphism of A(U) with A(φ−1(U))G.
(2) If W ⊂ X is a closed invariant subset, then φ(W ) is closed in

Y .
(3) If W1 and W2 are disjoint closed invariant sets, then their images

under φ are disjoint.
5



Proof. The main technical results are provided by a theorem of Haboush
and a theorem of Nagata.

Theorem 2.3 (Haboush). Any reductive group G is geometrically re-
ductive.

Theorem 2.4 (Nagata). Let G be a geometrically reductive group act-
ing rationally on a finitely generated k-algebra R. Then the ring of
invariants RG is finitely generated.

In view of these theorems A(X)G is finitely generated. Hence we
can let Y = Spec A(X)G. The inclusion of A(X)G → A(X) induces a
morphism φ : X → Y . The claimed properties are easy to check for
φ. �

Remark 2.5. The following are straightforward observations:

(1) For any open subset U ⊂ Y , (U, φ) is a categorical quotient of
φ−1(U) by G.

(2) The images of two points in X coincide if and only if the orbit
closures of these two points intersect. Consequently, Y will be
an orbit space if and only if the orbits of the G action on X are
closed.

Remark 2.6. We will not prove Haboush’s theorem here. The inter-
ested reader may consult the original paper [Hab]. Over the complex
numbers reductive, geometrically reductive and linearly reductive co-
incide. This follows from the fact that any finite dimensional repre-
sentation is decomposible to irreducible representations. Projection to
the one-dimensional invariant subspace produces the desired invariant
linear functional.

We now sketch the proof of Nagata’s theorem. Since R is a finitely
generated k-algebra, we can pick generators f1, dots, fn that generate
R. We can also assume that the subspace spanned by the fi is G-
invariant. (If not, we can replace it by a minimal G-invariant subspace,
which is finite-dimensional by the argument in Lemma 2.1.) We thus
obtain a linear G action on the subspace spanned by fi by setting

f gi =
∑
j

αi,j(g)fj.

Let S = k[X1, . . . , Xn]. There is an action of G on S by setting

Xg
i =

∑
j

αi,j(g)Xj.

There is a k-algebra homomorphism from S to R sending Xi to fi that
is compatible with the G actions. We are thus reduced to proving
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Nagata’s theorem in the case when G acts on S preserving degree,
Q ⊂ S is a G-invariant ideal with the induced action on R = S/Q.
Under these assumptions we would like to see RG is finitely generated.

Suppose not. Since S is Noetherian, there exists an ideal Q maximal
among those that are G-invariant such that RG where R = S/Q is
not finitely generated. Then if J 6= 0 is a G-invariant homogeneous
ideal in R, then (R/J)G is finitely generated. Suppose first there is a
homogeneous ideal Q with the desired properties.

I claim that (R/J)G is integral over RG/(J ∩ RG). Suppose f ∈
(R/J)G. Pick h ∈ R such that the image of h in R/J is f . We would
like to find h0 ∈ RG such that (h)t−h0 for some positive integer t is in
RG. Look at the finite-dimensional, G-invariant subsapce M generated
by hg. [Unfortunately, there is potential for confusion between hg and
(h)t. The first denotes the g-translate of h, the second denotes the t-th
power of h. To distinguish between these two, we will put parentheses
around h in the latter case.] Since J is invariant, hg−h is in J for every
g. We conclude that M ∩ J has codimension 1 in M . We can write
every element in M uniquely as ah + h′ where a ∈ k and h′ ∈ M ∩ J .
Sending ah+ h′ to a defines a G-invariant linear functional l on M .

There is an action of G also on M∗. If we let h, j2, . . . , jn be a
basis of M where ji ∈ M ∩ J , we can identify M∗ with kr in terms
of the dual basis. The linear functional l corresponds to the vector
(1, 0, . . . , 0). Since G is geometrically reductive, there exists an invari-
ant homogeneous polynomial F ∈ k[X1, . . . , Xn] of degree t ≥ 1 such
that the coefficient of X t

1 does not vanish. Consider the morphism
k[X1, . . . , Xn] sending X1 to h and Xi to ji for i > 1.If h0 is the image
of F , ht − h0 belongs to J . We conclude that (R/J)G is integral over
RG/(J ∩RG).

If A is a finitely generated k-algebra which is integral over a subal-
gebra B, then B is finitely generated. Hence in our case, RG/(J ∩RG)
is finitely generated. In fact, (R/J)G is a finite RG/(J ∩RG)-module.

Choose a non-zero homogeneous element f of RG of degree at least
one. If f is not a zero-divisor, fR ∩ RG = fRG. Since RG/fRG is
finitely generated, (RG/fRG)+ is finitely generated as an ideal. Hence
RG

+ is finitely generated as an ideal in RG. Hence RG is a finitely
generated k-algebra.

Exercise 2.7. Modify the last paragraph of the proof in case f is a
zero-divisor. Hint: Consider the homogeneous ideal I of elements of
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R that annihilate f . Since RG/(fR ∩ RG) and RG/I ∩ RG are both
finitely generated, there is a finitely generated subalgebra of RG that
surjects onto both these algebras

In order to handle the non-homogeneous case, we may assume that
RG is a domain. By the homogeneous case SG is finitely generated.
RG is integral over SG/Q ∩ SG. It suffices to show that the field of
fractions of RG is a finitely generated extension of k. Let T be the set
of non-zero divisors of R. Form the ring of fractions of R with respect
to T . Let m be the maximal ideal. The field of fractions of RG may
be identified with a subfield of T−1R/m. Since T−1R/m is the field of
fractions of the finitely generated k-algebra R/m ∩R, this follows.

Example 2.8. Everyone’s favorite example is the action of GL(n) on
the space of n × n matrices Mn by conjugation. The space of ma-
trices is isomorphic to affine space An2

. Hence, the coordinate ring
is k[ai,j], 1 ≤ i, j ≤ n. Any conjugacy class has a representative in
Jordan canonical form which is unique upto a permutation of the Jor-
dan blocks. Since the set of eigenvalues of a matrix is invariant under
conjugation, we see that the elementary symmetric polynomials of the
eigenvalues, i.e. the coefficients of the characteristic polynomial, are
invariant under the action. Conversely, suppose that a polynomial is
invariant under conjugation. If the eigenvalues are distinct, we can di-
agonalize the matrix by connjugation. Hence the polynomial must be a
symmetric function of the eigenvalues. If the eigenvalues are repeated,
the diagonal matrix is in the closure of the orbits with non-trivial Jor-
dan blocks. We conclude that any invariant polynomial is a symmetric
polynomial of the eigenvalues. Since the elementary symmetric poly-
nomials generate the ring of symmetric polynomials, we conclude that
the ring of invariant functions is generated by the coefficients of the
characteristic polynomial.
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