MATH 417 HOMEWORK 6

This homework is due Wednesday October 8 in the beginning of class. You may collaborate on the homework. However, the final write-up must be yours and should reflect your own understanding of the problem. Please be sure to properly cite any help you get.

Problem 1 Calculate the following integrals where C is the positively oriented boundary of the square with vertices at $2-2 i, 2+2 i,-2+2 i,-2-2 i$

$$
\begin{gather*}
\int_{C} \frac{e^{-z}}{(z-i)} d z \tag{1}\\
\int_{C} \frac{\cos (z)}{z\left(z^{2}+25\right)} d z \tag{2}\\
\int_{C} \frac{z^{2}+8}{2 z-1} d z \tag{3}
\end{gather*}
$$

Problem 2 Evaluate the following integrals along the contour $|z-i|=2$ oriented in the positive sense.

$$
\int_{C} \frac{d z}{z^{2}+4}, \quad \text { and } \quad \int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}
$$

Problem 3 Let C be a simple closed contour oriented positively. Let f be analytic in a domain containing C and its interior. Let $f^{(n)}$ denote the n-th derivative of f with respect to z. Let z_{0} be in the interior of C. Show that

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

Problem 4 Let C be the unit circle. Show that for any real constant a

$$
\int_{C} \frac{e^{a z}}{z} d z=2 \pi i
$$

Deduce that

$$
\int_{0}^{\pi} e^{a \cos (\theta)} \cos (a \sin (\theta)) d \theta=\pi
$$

Problem 5 Show that if C is a positively oriented simple closed contour, then the area of the region enclosed by C is given by the integral

$$
\frac{1}{2 i} \int_{C} \bar{z} d z
$$

(Hint: Use Green's theorem.)

