
GRASSMANNIANS: THE FIRST EXAMPLE OF A MODULI
SPACE

1. What is a moduli problem?

Many objects in algebraic geometry vary in algebraically defined
families. For example, a conic in P2 has an equation of the form

ax2 + by2 + cz2 + dxy + exz + fyz = 0. (1)

As the coefficients in Equation (1) vary, so do the conics defined in
P2. In fact, two equations of the form (1) define the same conic if and
only if they are non-zero multiples of each other. The family of conics
in P2 is parameterized by the space of coefficients (a, b, . . . , f) modulo
scalars or the algebraic variety P5. In general, moduli theory studies
the geometry of families of algebraic objects.

Let S be a Noetherian scheme of finite type over a field k. Through-
out these notes, unless otherwise specified, schemes will be Noetherian
and of finite type over a field or a base scheme.

A moduli functor is a contravariant functor from the category of S-
schemes to the category of sets that associates to an S-scheme X the
equivalence classes of families of geometric objects parameterized by X.
Examples of such geometric objects include k-dimensional subspaces of
an n-dimensional vector space, smooth curves of genus g, closed sub-
schemes of Pn with a fixed Hilbert polynomial, or stable vector bundles
of degree d and rank r on a curve. Typical equivalence relations that
one imposes on geometric objects include the trivial relation (for ex-
ample, when considering k-dimensional subspaces of an n-dimensional
linear space, two subspaces are considered equivalent if and only if
they are equal), isomorphism (for example, when considering families
of smooth curves of genus g, two families are considered equivalent if
they are isomorphic) or projective equivalence (for example, when con-
sidering families of smooth curves of degree d and genus g in P3 up
to the action of PGL(4)). To make this more concrete consider the
following three functors.

Example 1.1 (The Grassmannian Functor). Let S be a scheme, E a
vector bundle on S and r a positive integer less than the rank of E.
Let

Gr(r, S, E) : {Schemes/S}o → {sets}
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be the contravariant functor that associates to an S-scheme X subvec-
tor bundles of X ×S E of rank r and to a morphism f : X → Y the
pull-back f ∗.

Example 1.2 (The Hilbert Functor). Let X → S be a projective
scheme, O(1) a relatively ample line bundle and P a fixed Hilbert
polynomial. Let

HilbP (X/S) : {Schemes/S}o → {sets}
be the contravariant functor that associates to an S scheme Y the
subschemes of X ×S Y which are proper and flat over Y and have the
Hilbert polynomial P .

Example 1.3 (Moduli of smooth curves). Let

Mg : {Schemes}o → {sets}
be the functor that assigns to a scheme Z the set of isomorphism classes
of families X → Z flat over Z whose fibers are smooth curves of genus
g and to a morphism between schemes the pull-back families.

Each of the functors in the three examples above poses a moduli
problem. We would like to understand these families of geometric ob-
jects. The first step in the solution of such a problem is to have a
description of the set of families parameterized by the scheme X. Ide-
ally, we would like to endow the set of families with some additional
algebraic structure.

Recall that the functor of points of a scheme X is the functor hX :
{Schemes}o → {sets} that associates to a scheme Y the set of mor-
phisms Hom(Y,X) and to each morphisms f : Y → Z, the map of
sets hX(f) : Hom(Z,X)→ Hom(Y,X) given by composition g ◦ f . By
Yoneda’s Lemma, the functor of points hX determines the scheme X.
More precisely, if two functor of points hX and hY are isomorphic as
functors, then X and Y are isomorphic as schemes.

Definition 1.4. A contravariant functor F : {Schemes/S}o → {sets}
is called representable if there exists a scheme M such that F is iso-
morphic to the functor of points hM of M . When M exists, it is called
a fine moduli space for F .

To make this slightly more concrete, the functor F is represented by
a scheme M over S and an element U ∈ F (M) if for every S scheme
Y , the map

HomS(Y,M)→ F (Y )
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given by g → g∗U is an isomorphism. If it exists, M is unique up to a
unique isomorphism.

The ideal situation is for a functor to be represented by a scheme (as
happens in Examples 1.1 and 1.2). However, for many moduli problems
(such as in Example 1.3), there does not exist a scheme representing
the functor. There are two common ways of dealing with this issue.
First, we may relax the requirement of representing the functor in the
category of schemes and look instead for an algebraic space, Deligne-
Mumford stack or, more generally, an Artin stack representing the
functor. Second, we can weaken our notion of representing a functor.
The most common alternative we will pursue in these notes will be to
seek a scheme that coarsely represents the functor.

Definition 1.5. Given a contravariant functor F from schemes over
S to sets, we say that a scheme X(F ) over S coarsely represents the
functor F if there is a natural transformation of functors

Φ : F → HomS(∗, X(F ))

such that

(1) Φ(spec(k)) : F (spec(k)) → HomS(spec(k), X(F )) is a bijection
for every algebraically closed field k,

(2) For any S-scheme Y and any natural transformation

Ψ : F → HomS(∗, Y ),

there is a unique natural transformation

Π : HomS(∗, X(F ))→ HomS(∗, Y )

such that Ψ = Π ◦ Φ.

If X(F ) coarsely represents F , then it is called a coarse moduli space.

Observe that a coarse moduli space, if it exists, is unique up to
isomorphism.

Exercise 1.6. The fine/coarse moduli spaces are endowed with a scheme
structure and carry more subtle information than the underlying set
parameterizing the geometric objects. To appreciate the distinction,
show that P1

C is a fine moduli space for one dimensional subspaces of
C2. Let C be the cuspidal cubic curve in P2 defined by y2z = x3 +x2z.
Although the map f : P1 → C given by (u, t) 7→ (u2t, u3, t3) is a bi-
jection between P1 and C, show that C is not a coarse moduli space
parameterizing one dimensional subspaces of C2.
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Finding a moduli space, that is a scheme or stack (finely or coarsely)
representing a functor, is only the first step of a moduli problem. Usu-
ally the motivation for constructing a moduli space is to understand the
objects this space parameterizes. This in turn requires a good knowl-
edge of the geometry of the moduli space itself. The questions about
moduli spaces that we will be concerned about in these notes include:

(1) Is the moduli space proper? If not, does it have a modular
compactification? Is the moduli space projective?

(2) What is the dimension of the moduli space? Is it connected? Is
it irreducible? What are its singularities?

(3) What is the cohomology/Chow ring of the moduli space?

(4) What is the Picard group of the moduli space? Assuming the
moduli space is projective, which of the divisors are ample?
Which of the divisors are effective?

(5) Can the moduli space be rationally parameterized? What is the
Kodaira dimension of the moduli space?

(6) Can one run the Mori program on the moduli space? What are
the different birational models of the moduli space? Do they in
turn have modular interpretations?

The second step of the moduli problem is answering as many of these
questions as possible. The focus of this course will be the second step
of the moduli problem. In this course, we will not concentrate on the
constructions of the moduli spaces. We will often stop at outlining the
main steps of the constructions only in so far as they help us understand
the geometry. We will spend most of the time talking about the explicit
geometry of these moduli spaces.

We begin our study with the Grassmannian. The Grassmannian is
the scheme that represents the functor in Example 1.1. Grassman-
nians lie at the heart of moduli theory. Their existence is a major
step in the proof of the existence of the Hilbert scheme. Many moduli
spaces we will discuss in turn can be constructed as quotients of Hilbert
schemes. More importantly, almost every construction in moduli the-
ory is inspired by or mimics some aspect of Grassmannian geometry.
For example, the cohomology ring of the Grassmannian is generated by
the Chern classes of tautological bundles. Similarly, the cohomology
of some important moduli spaces, like the Quot scheme on P1 or the
moduli space of stable vector bundles of rank r and degree d with fixed
determinant over a curve, can be understood in terms of tautological
classes constructed via a universal family or a universal bundle. Even
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when the Chern classes of tautological bundles are far from generat-
ing the cohomology ring, as in the case of the moduli space of curves
of genus g, they still generate an important subring of the cohomol-
ogy. The Grassmannian has a natural stratification given by Schubert
cells. Similarly, several stratifications of the moduli spaces we discuss,
such as the topological stratification of the moduli space of curves,
will pay an important role. Finally, there are fast algorithms such as
the Littlewood-Richardson rule for computing intersection products of
Schubert cycles in the Grassmannian. We will study similar algorithms
for multiplying geometrically defined classes in the Kontsevich moduli
spaces and the moduli space of curves of genus g. To study many as-
pects of moduli theory in a simple setting motivates us to begin our
exploration with the Grassmannian.

Additional references: For a more detailed introduction to moduli
problems you should read [HM] Chapter 1 Section A, [H] Lecture 21,
[EH] Section VI and [K] Section I.1.

2. Preliminaries about the Grassmannian

There are many good references for the geometry of Grassmannians. I
especially recommend [H] Lectures 6 and 16, [GH] Chapter I.5, [Ful2]
Chapter 14, and the two papers [Kl2] and [KL].

Let V be an n-dimensional vector space. G(k, n) is the Grassman-
nian that parameterizes k-dimensional linear subspaces of V . G(k, n)
naturally carries the structure of a smooth, projective variety of dimen-
sion k(n−k). It is often convenient to think of G(k, n) as the parameter
space of (k − 1)-dimensional projective linear spaces in Pn−1. When
using this point of view, it is customary to denote the Grassmannian
by G(k − 1, n− 1).

We will now give G(k, n) the structure of an abstract variety. Given
a k-dimensional subspace Ω of V , we can represent it by a k×n matrix.
Choose a basis v1, . . . , vk for Ω and form a matrix with v1, . . . vk as the
row vectors

M =

 →
v1

. . .
→
vk

 .

The general linear group GL(k) acts on the set of k × n matrices by
left multiplication. This action corresponds to changing the basis of
Ω. Therefore, two k × n matrices represent the same linear space if
and only if they are in the same orbit of the action of GL(k). Since
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the k vectors span Ω, the matrix M has rank k. Hence, M has a non-
vanishing k × k minor. Consider the Zariski open set of matrices that
have a fixed non-vanishing k × k minor. We can normalize M so that
this submatrix is the identity matrix. For example, if the k × k minor
consists of the first k columns, the normalized matrix has the form

1 0 · · · 0 ∗ · · · ∗
0 1 · · · 0 ∗ · · · ∗

· · ·
0 0 · · · 1 ∗ · · · ∗

 .

A normalized matrix gives a unique representation for the vector space
Ω. The space of normalized matrices such that a fixed k × k minor is
the identity matrix is affine space Ak(n−k). When a matrix has two non-
zero k× k minors, the transition from one representation to another is
clearly given by algebraic functions. We thus endow G(k, n) with the
structure of a k(n−k) dimensional abstract variety. When V = Cn, this
construction endows G(k, n) with the structure of a complex manifold
of dimension k(n−k). Since the unitary group U(n) maps continuously
ontoG(k, n), we conclude thatG(k, n) is a connected, compact complex
manifold.

So far we have treated the Grassmannian simply as an abstract va-
riety. However, it is easy to endow it with the structure of a smooth,
projective variety. We now describe the Plücker embedding of G(k, n)

into P(
∧k V ). Given a k-plane Ω, choose a basis for it v1, . . . , vk. The

Plücker map Pl : G(k, n)→ P(
∧k V ) is defined by sending the k-plane

Ω to v1 ∧ · · · ∧ vk. If we pick a different basis w1, . . . , wk for Ω, then

w1 ∧ · · · ∧ wk = det(M)v1 ∧ · · · ∧ vk,

where M is the matrix giving the change of basis of Ω from v1, . . . , vk
to w1, . . . , wk. Hence, the map Pl is a well-defined map independent
of the chosen basis.

The map Pl is injective since we can recover Ω from its image p =
[v1 ∧ · · · ∧ vk] ∈ P(

∧k V ) as the set of all vectors v ∈ V such that

v ∧ v1 ∧ · · · ∧ vk = 0. We say that a vector in
∧k V is completely

decomposable if it can be expressed as v1 ∧ v2 ∧ · · · ∧ vk for k vectors
v1, . . . , vk ∈ V .

Exercise 2.1. When 1 < k < dimV , most vectors in
∧k V are not

completely decomposable. Show, for example, that e1 ∧ e2 + e3 ∧ e4 ∈∧2 V is not completely decomposable if e1, e2, e3, e4 is a basis for V .
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A point of P(
∧k V ) is in the image of the map Pl if and only if the

representative
∑
pi1,...,ike1 ∧ · · · ∧ eik is completely decomposable. It

is not hard to characterize the subvariety of P(
∧k V ) corresponding to

completely decomposable elements. Given a vector u ∈ V ∗, we can
define a contraction

uy :
k∧
V →

k−1∧
V

by setting

uy(v1 ∧ v2 ∧ · · · ∧ vk) =
k∑
i=1

(−1)i−1u(vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk

and extending linearly. The contraction map extends naturally to u ∈∧j V ∗. An element x ∈
∧k V is completely decomposable if and only if

(uyx) ∧ x = 0 for every u ∈
∧k−1 V ∗. We can express these conditions

in coordinates. Choose a basis e1, . . . , en for V and let u1, . . . , un be
the dual basis for V ∗. Expressing the condition (uyx) ∧ x = 0 in these
coordinates, for every distinct set of k − 1 indices i1, . . . , ik−1 and a
disjoint set of k + 1 distinct indices j1, . . . , jk+1, we obtain the Plücker
relation

k+1∑
t=1

(−1)spi1,...,ik−1,jtpj1,...,ĵt,...jk+1
= 0.

The set of all Plücker relations generates the ideal of the Grassmannian.

Example 2.2. The simplest and everyone’s favorite example is G(2, 4).
In this case, there is a unique Plücker relation

p12p34 − p13p24 + p14p23 = 0.

The Plücker map embeds G(2, 4) in P5 as a smooth quadric hypersur-
face.

Exercise 2.3. Write down all the Plücker relations for G(2, 5) and
G(3, 6). Prove that the Plücker relations generate the ideal of G(k, n).

We can summarize our discussion in the following theorem.

Theorem 2.4. The Grassmannian G(k, n) is a smooth, irreducible,
rational, projective variety of dimension k(n− k).

The cohomology ring of the complex Grassmannian (and more gen-
erally, the Chow ring of the Grassmannian) can be very explicitly de-
scribed. Fix a flag

F• : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V,
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where Fi is an i-dimensional subspace of V . Let λ be a partition with
k parts satisfying the conditions

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

We will call partitions satisfying these properties admissible partitions.
Given a flag F• and an admissible partition λ, we can define a subvariety
of the Grassmannian called the Schubert variety Σλ1,...,λk

(F•) of type λ
with respect to the flag F• to be

Σλ1,...,λk
(F•) := { [Ω] ∈ G(k, n) : dim(Ω ∩ Fn−k+i−λi

) ≥ i }.

The homology and cohomology classes of a Schubert variety depend
only on the partition λ and do not depend on the choice of flag. For each
partition λ, we get a homology class and a cohomology class (Poincaré
dual to the homology class). When writing partitions, it is customary
to omit the parts that are equal to zero. We will follow this custom
and write, for example, Σ1 instead of Σ1,0.

The Schubert classes give an additive basis for the cohomology ring
of the Grassmannian. In order to prove this, it is useful to introduce a
stratification of G(k, n). Pick an ordered basis e1, e2, . . . , en of V and
let F• be the standard flag for V defined by setting Fi =< e1, . . . , ei >.
The Schubert cell Σc

λ1,...,λk
(F•) is defined as {[Ω] ∈ G(k, n) |

dim(Ω∩Fj) =

 0 for j < n− k + 1− λ1

i for n− k + i− λi ≤ j < n− k + i+ 1− λi+1

k for n− λk ≤ j

 .

Given a partition λ, define the weight of the partition to be

|λ| =
k∑
i=1

λi.

The Schubert cell Σc
λ1,...,λk

(F•) is isomorphic to Ak(n−k)−|λ|. For Ω ∈
Σc
λ1,...,λk

(F•) we can uniquely choose a distinguished basis so that the
matrix having as rows this basis has the form

∗ · · · ∗ 1 0 · · · 0 0 · · · 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 · · · 0 · · · 0

· · ·
∗ · · · ∗ 0 ∗ · · · ∗ 0 · · · 1 · · · 0

 ,

where the only non-zero entry in the (n− k + i− λi)-th column is a 1
in row i and all the (i, j) entries are 0 if j > n− k + i− λi. Thus, we
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see that the Schubert cell is isomorphic to Ak(n−k)−|λ|. We can express
the Grassmannian as a disjoint union of these Schubert cells

G(k, n) =
⊔

λ admissible

Σc
λ(F•).

Let σλ1,...,λk
denote the cohomology class Poincaré dual to the funda-

mental class of the Schubert variety Σλ1,...,λk
. Since the Grassmannian

has a cellular decomposition where all the cells have even real dimen-
sion, we conclude the following theorem.

Theorem 2.5. The integral cohomology ring H∗(G(k, n),Z) is torsion
free. The classes of Schubert varieties σλ as λ varies over admissible
partitions give an additive basis of H∗(G(k, n),Z).

Exercise 2.6. Deduce as a corollary of Theorem 2.5 that the Euler
characteristic of G(k, n) is

(
n
k

)
. Compute the Betti numbers of G(k, n).

Exercise 2.7. Using the fact that G(k, n) has a stratification by affine
spaces, prove that the Schubert cycles give an additive basis of the
Chow ring of G(k, n). Show that the cycle map from the Chow ring of
G(k, n) to the cohomology ring is an isomorphism.

Example 2.8. To make the previous discussion more concrete, let
us describe the Schubert varieties in G(2, 4) = G(1, 3). For drawing
pictures, it is more convenient to use the projective viewpoint of lines
in P3. The possible admissible partitions are (1), (1, 1), (2), (2, 1), (2, 2)
and the empty partition. A flag in P3 corresponds to a choice of point
q contained in a line l contained in a plane P contained in P3.

(1) The codimension 1 Schubert variety Σ1 parameterizes lines that
intersect the line l.

(2) The codimension 2 Schubert variety Σ1,1 parameterizes lines that
are contained in the plane P .

(3) The codimension 2 Schubert variety Σ2 parameterizes lines that
pass through the point p.

(4) The codimension 3 Schubert variety Σ2,1 parameterizes lines in
the plane P and that pass through the point p.

(5) The codimension 4 Schubert variety Σ2,2 is a point corresponding
to the line l.

A pictorial representation of these Schubert varieties is given in the
next figure.

Exercise 2.9. Following the previous example, work out the explicit
geometric description of all the Schubert varieties inG(2, 5) andG(3, 6).
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Figure 1. Pictorial representations of Σ1,Σ1,1,Σ2 and Σ2,1, respectively.

Since the cohomology of Grassmannians is generated by Schubert
cycles, given two Schubert cycles σλ and σµ, their product in the co-
homology ring can be expressed as a linear combination of Schubert
cycles.

σλ · σµ =
∑
ν

cνλ,µ σν

The structure constants cνλ,µ of the cohomology ring with respect to
the Schubert basis are known as Littlewood - Richardson coefficients.

We will describe several methods for computing the Littlewood-
Richardson coefficients. It is crucial to know when two varieties inter-
sect transversely. Kleiman’s Transversality Theorem provides a very
useful criterion for ascertaining that the intersection of two varieties in
a homogeneous space is transverse. Here we will recall the statement
and sketch a proof. For a more detailed treatment see [Kl1] or [Ha]
Theorem III.10.8.

Theorem 2.10. (Kleiman) Let k be an algebraically closed field. Let
G be an integral algebraic group scheme over k and let X be an integral
algebraic scheme with a transitive G action. Let f : Y → X and f ′ :
Z → X be two maps of integral algebraic schemes. For each rational
element of g ∈ G, denote by gY the X-scheme given by y 7→ gf(y).

(1) Then there exists a dense open subset U of G such that for every
rational element g ∈ U , the fiber product (gY ) ×X Z is either
empty or equidimensional of the expected dimension

dim(Y ) + dim(Z)− dim(X).

(2) If the characteristic of k is zero and Y and Z are regular, then
there exists an open, dense subset U ′ of G such that for g ∈ U ′,
the fiber product (gY )×X Z is regular.

Proof. The theorem follows from the following lemma.

Lemma 2.11. Suppose all the schemes in the following diagram are
integral over an algebraically closed field k.
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W Z

p↙ q ↘ r ↙
S X

If q is flat, then there exists a dense open subset of S such that p−1(s)×X
Z is empty or equidimensional of dimension

dim(p−1(s)) + dim(Z)− dim(X).

If in addition, the characteristic of k is zero, Z is regular and q has
regular fibers, then p−1(s)×X Z is regular for a dense open subset of S.

The theorem follows by taking S = G, W = G × Y and q : G ×
Y → X given by q(g, y) = gf(y). The lemma follows by flatness and
generic smoothness. More precisely, since q is flat, the fibers of q are
equidimensional of dimension dim(W )− dim(X). By base change the
induced map W ×X Z → Z is also flat, hence the fibers have dimension
dim(W ×X Z)− dim(Z). Consequently,

dim(W ×X Z) = dim(W ) + dim(Z)− dim(X).

There is an open subset U1 ⊂ S over which p is flat, so the fibers are
either empty or equidimensional with dimension dim(W ) − dim(S).
Similarly there is an open subset U2 ⊂ S, where the fibers of p ◦
prW : X ×X Z → S is either empty or equidimensional of dimension
dim(X ×X Z)− dim(S). The first part of the lemma follows by taking
U = U1 ∩ U2 and combining these dimension statements. The second
statement follows by generic smoothness. This is where we use the
assumption that the characteristic is zero. �

The Grassmannians G(k, n) are homogeneous under the action of
GL(n). Taking f : Y → G(k, n) and f ′ : Z → G(k, n) to be the
inclusion of two subvarieties in Kleiman’s transversality theorem, we
conclude that gY ∩ Z is either empty or a proper intersection for a
general g ∈ GL(n). Furthermore, if the characteristic is zero and Y
and Z are smooth, then gY ∩Z is smooth. In particular, the intersection
is transverse. Hence, Kleiman’s Theorem is an extremely powerful tool
for computing products in the cohomology.

Example 2.8 continued. Let us work out the Littlewood - Richard-
son coefficients of G(2, 4) = G(1, 3). It is simplest to work dually with
the intersection of Schubert varieties. Suppose we wanted to calculate
Σ2 ∩ Σ2. Σ2 is the class of lines that pass through a point. If we take
two distinct points, there will be a unique line containing them both.
We conclude that Σ2∩Σ2 = Σ2,2. By Kleiman’s transversality theorem,
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we know that the intersection is transverse. Therefore, this equality is
a scheme theoretic equality. Similarly, Σ1,1∩Σ1,1 = Σ2,2, because there
is a unique line contained in two distinct planes in P3. On the other
hand Σ1,1 ∩ Σ2 = 0 since there will not be a line contained in a plane
and passing through a point not contained in the plane.

The hardest class to compute is Σ1∩Σ1. Since Schubert classes give
an additive basis of the cohomology, we know that Σ1∩Σ1 is expressible
as a linear combination of Σ1,1 and Σ2. Suppose

Σ1 ∩ Σ1 = aΣ1,1 + bΣ2

We just computed that both Σ1,1 and Σ2 are self-dual cycles. In order
to compute the coefficient we can calculate the triple intersection. Σ1∩
Σ1 ∩Σ2 is the set of lines that meet two lines l1, l2 and contain a point
q. There is a unique such line given by ql1 ∩ ql2. The other coefficient
can be similarly computed to see σ2

1 = σ1,1 + σ2.

Exercise 2.12. Work out the multiplicative structure of the cohomol-
ogy ring of G(2, 4) = G(1, 3), G(2, 5) = G(1, 4) and G(3, 6) = G(2, 5).

In the calculations for G(2, 4), it was important to find a dual basis to
the Schubert cycles in H4(G(2, 4),Z). Given an admissible partition λ,
we define a dual partition λ∗ by setting λ∗i = n−k−λk−i+1. Pictorially,
if the partition λ is represented by a Young diagram inside a k×(n−k)
box, the dual partition λ∗ is the partition complementary to λ in the
k × (n− k) box.

Exercise 2.13. Show that the dual of the Schubert cycle σλ1,...,λk
is

the Schubert cycle σn−k−λk,...,n−k−λ1 . Conclude that the Littlewood
- Richardson coefficient cνλ,µ may be computed as the triple product
σλ · σµ · σν∗ .

The method of undetermined coefficients we just employed is a pow-
erful technique for calculating the classes of subvarieties of the Grass-
mannian. Let us do an example to show another use of the technique.

Example 2.14. How many lines are contained in the intersection of
two general quadric hypersurfaces in P4? In order to work out this
problem we can calculate the class of lines contained in a quadric hy-
persurface in P4 and square the class. The dimension of the space of
lines on a quadric hypersurface is 3. The classes of dimension 3 in
G(1, 4) are given by σ3 and σ2,1. We can, therefore, write this class
as aσ3 + bσ2,1. The coefficient of σ3 is zero because σ3 is self-dual and
corresponds to lines that pass through a point. As long as the quadric
hypersurface does not contain the point, the intersection will be zero.
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On the other hand, b = 4. Σ2,1 parameterizes lines in P4 that intersect
a P1 and are contained in a P3 containing the P1. The intersection of
the quadric hypersurface with the P3 is a quadric surface. The lines
have to be contained in this surface and must pass through the two
points of intersection of the P1 with the quadric surface. There are
four such lines. We conclude that there are 16 lines that are contained
in the intersection of two general quadric hypersurfaces in P4.

Exercise 2.15. Another way to verify that there are 16 lines in the
intersection of two general quadric hypersurfaces in P4 is to observe that
such an intersection is a quartic Del Pezzo surface D4. Such a surface
is the blow-up of P2 at 5 general points embedded by its anti-canonical
linear system. Check that the lines in this embedding correspond to the
(−1)-curves on the surface and show that the number of (−1)-curves
on this surface is 16 (see [Ha] Chapter 5).

Exercise 2.16. Let C be a smooth, complex, irreducible, non-degenerate
curve of degree d and genus g in P3. Compute the class of the variety
of lines that are secant to C.

We now give two presentations for the cohomology ring of the Grass-
mannian. These presentations are useful for theoretical computations.
However, we will soon develop Littlewood-Richardson rules, positive
combinatorial rules for computing Littlewood-Richardson coefficients,
that are much more effective in computing and understanding the struc-
ture of the cohomology ring of G(k, n).

A partition λ with λ2 = · · · = λk = 0 is called a special partition.
A Schubert cycle defined with respect to a special partition is called
a Pieri cycle. Pieri’s rule is a formula for multiplying an arbitrary
Schubert cycle with a Pieri cycle.

Theorem 2.17 (Pieri’s formula). Let σλ be a Pieri cycle. Suppose σµ
is any Schubert cycle with parts µ1, . . . , µk. Then

σλ · σµ =
∑

µi≤νi≤µi−1

|ν|=|λ|+|µ|

σν (2)

Exercise 2.18. Prove Pieri’s formula.

Exercise 2.19. Show that the locus where a Plücker coordinate van-
ishes corresponds to a Schubert variety Σ1. Observe that the class of
Σ1 generates the second homology of the Grassmannian. In particu-
lar, the Picard group is isomorphic to Z. Conclude that OG(k,n)(Σ1) is
the very ample generator of the Picard group and it gives rise to the
Plücker embedding.
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Exercise 2.20. Compute the degree of the Grassmannian G(k, n) un-

der the Plücker embedding. The answer is provided by σ
k(n−k)
1 . When

k = 2, this computation is relatively easy to carry out. By Pieri’s for-
mula σ1 times any cycle in G(2, n) either increases the first index of the
cycle or it increases the second index provided that it is less than the
first index. This means that the degree of the Grassmannian G(2, n) is
the number of ways of walking from one corner of an (n−2)×(n−2) to
the opposite corner without crossing the diagonal. This is well-known
to be the Catalan number

(2(n− 2))!

(n− 2)!(n− 1)!
.

The general formula is more involved. The degree of G(k, n) is given
by

(k(n− k))!
k∏
i=1

(i− 1)!

(n− k + i− 1)!
.

The special Schubert cycles generate the cohomology ring of the
Grassmannian. In order to prove this we have to express every Schubert
cycle σλ1,...,λk

as a linear combination of products of special Schubert
cycles. Consider the following example

σ4,3,2 = σ2 · σ4,3 − σ4 · σ4,1 + σ6 · σ2,1.

To check this equality, using Pieri’s rule expand the products.

σ2 · σ4,3 = σ4,3,2 + σ4,4,1 + σ5,3,1 + σ5,4 + σ6,3

σ4 · σ4,1 = σ4,4,1 + σ5,3,1 + σ6,2,1 + σ7,1,1 + σ5,4 + σ6,3 + σ7,2 + σ8,1

σ6 · σ2,1 = σ7,1,1 + σ6,2,1 + σ7,2 + σ8,1

Note the following features of this calculation. The class σ4,3,2 only
occurs in the first product. All other products occur twice with different
signs.

Exercise 2.21. Using Pieri’s formula generalize the preceding example
to prove the following identity

(−1)kσλ1,...,λk
=

k∑
j=1

(−1)jσλ1,...,λj−1,λj+1−1,...,λk−1 · σλj+k−j

14



Theorem 2.22 (Giambelli’s formula). Any Schubert cycle may be ex-
pressed as a linear combination of products of special Schubert cycles
as follows

σλ1,...,λk
=

∣∣∣∣∣∣∣∣
σλ1 σλ1+1 σλ1+2 . . . σλ1+k−1

σλ2−1 σλ2 σλ2+1 . . . σλ2+k−2

. . . . . . . . .
σλk−k+1 σλk−k+2 σλk−k+3 . . . σλk

∣∣∣∣∣∣∣∣
Exercise 2.23. Expand the determinant by the last column and use
the previous exercise to prove Giambelli’s formula by induction.

Exercise 2.24. Use Giambelli’s formula to express σ3,2,1 in G(4, 8) in
terms of special Schubert cycles. Using Pieri’s rule find the class of its
square.

Pieri’s formula and Giambelli’s formula together give an algorithm
for computing the cup product of any two Schubert cycles. Unfortu-
nately, in practice this algorithm is tedious to use. We will rectify this
problem shortly.

Before continuing the discussion, we recall a few basic facts about
Chern classes. The reader should refer to [Ful2] 3.2 and 14.4 for more
details. Given a vector bundle E → X of rank r on a smooth, complex
projective variety, one associates a collection of classes ci(E) ∈ H2i(X)
called Chern classes and a total Chern class

c(E) = 1 + c1(E) + · · ·+ cr(E)

satisfying the following properties:

(1) ci(E) = 0 for all i > 0.
(2) For any exact sequence

0→ E1 → E2 → E3 → 0

of vector bundles on X, the total Chern classes satisfy the Whit-
ney sum formula c(E2) = c(E1)c(E3).

(3) If E = OX(D) is a line bundle, then c1(E) = [D].
(4) If f : Y → X is a proper morphism, then the following projec-

tion formula holds

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗(α)

for every cycle α on Y and every i.
(5) If f : Y → X is a flat morphism, then the following pull-back

formula holds

ci(f
∗E) ∩ f ∗α = f ∗(ci(E) ∩ α)

for all cycles α on X and all i.
15



Exercise 2.25. Using the Euler sequence and the Whitney sum for-
mula, show that the total Chern class of the tangent bundle of Pn is
(1 + h)n=1 in Z[h]/(hn+1), where h is the hyperplane class.

A very important consequence of the Whitney sum formula and the
pull-back formula is the splitting principle, which allows one to compute
the Chern classes of any vector bundle obtained from E via linear
algebraic operations (for example, E∗,

∧sE,E ⊗ E) in terms of the
Chern classes of E. One factors the total Chern class

c(E) =
r∏
j=1

(1 + αj)

into a product of Chern roots so that ci(E) is the i-th elementary sym-
metric polynomial of the Chern roots. For example, c1(E) =

∑r
j=1 αj

and c2(E) =
∑

i<j αiαj. Then the Chern roots of a vector bundle
obtained from E via linear algebraic operations can be expressed by
applying the linear algebraic operations to the roots.

For example, if the Chern roots of E are αj, then the Chern roots of
the dual E∗ are −αj. Hence, by the splitting principle

c(E∗) =
r∏
j=1

(1− αj).

We conclude that ci(E
∗) = (−1)ici(E).

Exercise 2.26. As an other important example, let L be a line bundle
with c1(L) = β, then

c(E ⊗ L) =
∏
j

(1 + β + αj)

Conclude that

ci(E) =
i∑

j=1

(−1)i−j
(
r − j
i− j

)
c1(L)j−icj(E ⊗ L).

Exercise 2.27. Let the Chern roots of E be α1, . . . , αr and let the
Chern roots of F be β1, . . . , βs. Using the splitting principle, calculate
that

c(
m∧
E) =

∏
i1<i2<···<im

(1 + αi1 + αi2 + · · ·+ αim).

Using the splitting principle calculate that

c(E ⊗ F ) =
∏
i,j

(1 + αi + βj).
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Geometrically, the Chern class ci(E) can be interpreted as a degen-
eracy locus (assuming that E has sufficiently many sections). More
precisely, let s1, . . . , sr be r sections such that for any i ≤ r, the set

Di(E) = {x ∈ X | s1(x), . . . , sr−i+1(x) are dependent }
is empty or has pure dimension i. Then ci(E) is the class of this
degeneracy locus Di. If E does not have enough global sections, we can
tensor E with a sufficiently ample line bundle L such that E⊗L has r
global sections with the property that the degeneracy locus Di(E ⊗L)
is empty or of pure dimension i. Using Exercise 2.26 we can obtain the
Chern classes of E from the Chern classes of E ⊗ L and L.

One extremely useful way of presenting the cohomology of the Grass-
mannian comes from considering the universal exact sequence of bun-
dles on G(k, n). Let U denote the tautological bundle over G(k, n).
Recall that the fiber of U over a point [Ω] is the vector subspace Ω of
V . There is a natural inclusion

0→ U → V → Q→ 0

with quotient bundle Q.

Theorem 2.28. As a ring the cohomology ring of G(k, n) is isomorphic
to

R[c1(U), . . . , ck(U), c1(Q), . . . , cn−k(Q)]/(c(U)c(Q) = 1).

Moreover, the chern classes of the Quotient bundle generate the coho-
mology ring.

The Chern classes of the tautological bundle and the quotient bundle
are easy to see in terms of Schubert cycles. As an exercise prove the
following proposition:

Proposition 2.29. The chern classes of the tautological bundle are
given as follows:

ci(U) = (−1)iσ1,...,1

where there are i ones. The chern classes of the quotient bundle are
given by

ci(Q) = σi.

Example 2.30. We can calculate the number of lines that are con-
tained in the intersection of two general quadric hypersurfaces in P4

yet another way. A quadric hypersurface Q is a section of the vector
bundle Sym2(U∗) over G(2, 5). The locus of lines contained in Q is the
locus where the section defined by Q vanishes. Hence, this class can
be computed as c3(Sym2(U∗)). If the Chern roots of U are α, β, then
using the splitting principle, c3(Sym2(U∗)) = 4αβ(α + β) = 4σ2,1. We
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recover that there are 16 lines in the intersection of two general quadric
hypersurfaces in P4.

Exercise 2.31. Calculate the number of lines on a general cubic hy-
persurface in P3. More generally, calculate the class of the variety of
lines contained in a general cubic hypersurface in Pn.

Exercise 2.32. Calculate the number of lines on a general quintic
threefold.

Exercise 2.33. Calculate the number of lines contained in a general
pencil of quartic surfaces in P3. Carry out the same calculation for a
general pencil of sextic hypersurfaces in P4.

The local structure of the Grassmannian. The tangent bundle
of the Grassmannian has a simple intrinsic description in terms of the
tautological bundle U and the quotient bundle Q. There is a natural
identification of the tangent bundle of the Grassmannian with homo-
morphisms from U to Q, in other words

TG(k, n) = Hom(U,Q).

In particular, the tangent space to the Grassmannian at a point [Ω]
is given by Hom(Ω, V/Ω). One way to realize this identification is to
note that the Grassmannian is a homogeneous space for GL(n). The
tangent space at a point may be naturally identified with quotient of
the Lie algebra of GL(n) by the Lie algebra of the stabilizer. The Lie
algebra of GL(n) is the endomorphisms of V . Those that stabilize Ω
are those homomorphisms φ : V → V such that φ(Ω) ⊂ Ω. These
homomorphisms are precisely homomorphisms Hom(Ω, V/Ω).

Exercise 2.34. Use the above description to obtain a description of
the tangent space to the Schubert variety Σλ1,...,λk

at a smooth point
[Ω] of the variety.

We can use the description of the tangent space to check that the in-
tersection of Schubert cycles in previous calculations were indeed trans-
verse. For example, suppose we take the intersection of two Schubert
varieties Σ1 in G(1, 3) defined with respect to two skew-lines. Then
the intersection is a smooth variety. In vector space notation, we can
assume that the conditions are imposed by two non-intersecting two-
dimensional vector spaces V1 and V2. Suppose a 2-dimensional vector
space Ω meets each in dimension 1. The tangent space to Ω at the
intersection is given by

φ ∈ Hom(Ω, V/Ω) such that φ(Ω ∩ Vi) ⊂ [Vi] ∈ V/Ω.
18



As long as V1 and V2 do not intersect, Ω has exactly a one-dimensional
intersection with each of Vi and these span Ω. On the other hand,
the quotient of Vi in V/Ω is one-dimensional. We conclude that the
dimension of such homomorphisms is 2. Since this is equal to the
dimension of the variety, we deduce that the variety is smooth.

Exercise 2.35. Carry out a similar analysis for the other examples we
did above.

Using the description of the tangent bundle, we can calculate the
canonical class of G(k, n). We use the splitting principle for Chern
classes. Let α1, . . . , αk be the Chern roots of S∗. We then have the
equation

c(S∗) =
k∏
i=1

(1 + αi) = 1 + σ1 + σ1,1 + · · ·+ σ1,1,...,1.

Similarly, let β1, . . . , βn−k be the Chern roots of Q. We then have the
equation

c(Q) =
n−k∏
j=1

(1 + βj) = 1 + σ1 + σ2 + · · ·+ σn−k.

The Chern classes of the tangent bundle can be expressed as

c(TG(k, n)) = c(S∗ ⊗Q) =
k∏
i=1

n−k∏
j=1

(1 + αi + βj).

In particular, the first Chern class is equal to nσ1. Since this class
is n times the ample generator of the Picard group, we conclude the
following theorem.

Theorem 2.36. The canonical class of G(k, n) is equal to −nσ1. G(k, n)
is a Fano variety of Picard number one and index n.

Definition 2.37. Let S be a scheme, E a vector bundle on S and k a
natural number less than or equal to the rank of E. The functor

Gr(k,E) : {schemes overS} → {sets}

associates to every S scheme X the set of rank k subvector bundles of
E ×S X.

Theorem 2.38. The functor Gr(k,E) is represented by a scheme
GS(k,E) and a subvector bundle U ⊂ E ×S GS(k,E) of rank k.
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3. The Geometric Littlewood-Richardson rule

Positive combinatorial rules for determining Littlewood-Richardson
coefficients are known as Littlewood-Richardson rules. As an introduc-
tion to the degeneration techniques that we will employ through out
this course, we give a Littlewood-Richardson rule for the Grassman-
nian.

There are many Littlewood-Richardson rules for the Grassmannian.
You can find other Littlewood-Richardson rules in [Ful1], [V1], [KT].
The rule we will develop here is a geometric Littlewood-Richardson
rule. These rules have many applications in geometry. For some exam-
ples of applications to positive characteristic, Schubert calculus over R
and monodromy groups see [V2].

Notation 3.1. Let e1, . . . , en be an ordered basis for the vector space
V . Let [ei, ej] denote the vector space spanned by the consecutive
basis elements ei, ei+1, . . . , ej−1, ej. Given a vector space W spanned
by a subset of the basis elements, let l(W ) and r(W ) denote the basis
elements with the smallest, respectively, largest index in W . Given a
basis element ei, let #ei = i denote the index of the basis element.

The fundamental example. Consider calculating σ2
1 inG(2, 4). Geo-

metrically we would like to calculate the class of two dimensional linear
spaces that meet two general two dimensional linear spaces in a four
dimensional vector space. Projectivizing this question is equivalent to
asking for the class of lines in P3 intersecting two general lines.

The idea underlying the approach to answering this question is clas-
sical. While it is hard to see the Schubert cycles that constitute this
intersection when the two lines that define the two Schubert cycles are
general, the result becomes easier if the lines are in special position.

To put the lines l1 and l2 in a special position fix a plane containing
l1 and rotate it about a point on it, so that it intersects l2. As long as
l1 and l2 do not intersect, they are in general position since the auto-
morphism group of P3 acts transitively on pairs of skew lines. However,
when l1 and l2 intersect, then they are no longer in general position.

We can ask the following fundamental question: What is the limiting
position of the lines that intersect both l1 and l2? Since intersecting the
lines are closed conditions, any limit line has to continue to intersect
l1 and l2. There are two ways that a line can intersect two intersecting
lines in P3. Either the line passes through their intersection point, or
if it does not pass through its intersection point then it must lie in
the plane spanned by the two lines. Note that these are both Schubert
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cycles. Since their dimensions are equal to the dimension of the original
variety, the class of the original variety has to be the sum of multiples
of these two Schubert cycles.

We can determine that the multiplicities are one by a local calcula-
tion. It suffices to check that the two cycles in special position intersect
generically transversely. Suppose that in the special position the two
lines l1 and l2 to be the projectivization of the vector spaces [e2, e3]
and [e3, e4], respectively. Let m1 and m2 be the two lines that are
the projectivization of the vector spaces spanned by [e1, e3] and [e2, e4],
respectively. m1 and m2 are contained in the two Schubert cycles of
lines intersecting li for i = 1, 2. In fact, m1 lies in the component of
intersection corresponding to lines that contain e3 and m2 lines in the
component of the intersection corresponding to lines that are contained
in the plane spanned by [e2, e3, e4]. The intersection of the tangent
spaces to the two Schubert varieties at m1 is expressed as

{φ ∈ Hom([e1, e3],
V

[e1, e3]
) | φ(e3) ∈ [e2, e3]

[e1, e3]
and φ(e3) ∈ [e3, e4]

[e1, e3]
}.

Since this is clearly a two dimensional space, we conclude that the two
Schubert varieties intersect transversely at m1. Similarly, the intersec-
tion of the tangent spaces to the two Schubert varieties at m2 can be
expressed as

{φ ∈ Hom([e2, e4],
V

[e2, e4]
) | φ(e2) ∈ [e2, e3]

[e2, e4]
and φ(e4) ∈ [e3, e4]

[e2, e4]
}.

Since this is also a two dimensional subspace, we conclude that the
two Schubert varieties intersect generically transversely and that the
multiplicities are equal to one.

We now generalize this example to arbitrary Grassmannians and the
product of arbitrary Schubert classes. In fact, we will give a rule for
computing the classes of a much larger class of varieties.

Definition 3.2. A Mondrian tableau M for G(k, n) consists of a set
of k vector spaces M = {W1, . . . ,Wk} spanned by consecutive basis
elements of the basis e1, . . . , en such that for every i, j

dim(WiWj) ≥ dimWi+#{Wk ∈M |Wk ⊂ WiWj andWk 6⊂ Wi}. (3)

Notation 3.3. We depict a Mondrian tableau as a set of k squares in
an n×n grid. We imagine placing the ordered basis along the diagonal
unit squares of the n × n grid in increasing order from southwest to
northeast. We then depict the vector space [ei, ej] with the square
whose diagonal consists of the unit squares labeled ei, . . . , ej. In order
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not to clutter the pictures, we omit the labels of the diagonal unit
squares. See Figure 4 for some examples of Mondrian tableaux.

Figure 2. Three Mondrian tableaux for G(3, 5). Proceed-
ing from left to right, the Mondrian tableaux depicted are
M1 = {[e1, e2], [e2, e5], [e3, e4]}, M2 = {[e1, e5], [e2, e4], [e3]}, M3 =
{[e1, e3], [e2, e4], [e4, e5]}.

Remark 3.4. Mondrian tableaux are named in honor of the Dutch
painter Piet Mondrian who painted numerous canvases reminiscent of
Mondrian diagrams.

To a Mondrian tableau M we associate a subvariety of the Grass-
mannian X(M) ⊂ G(k, n).

Definition 3.5. Let M be a Mondrian tableau for G(k, n). The Mon-
drian variety X(M) associated to M is the Zariski closure of the locus
of k-planes that admit a basis v1, . . . , vk such that vi ∈ Wi.

Exercise 3.6. (1) Show that the variety associated to a Mondrian
tableau with one vector space [ei, ej] is isomorphic to Pj−i.
(2) Show that the variety associated to a Mondrian tableau with two
vector spaces [ei, ej] ⊂ [ek, el] is isomorphic to a Schubert variety in
G(2, l − k + 1).
(3) Show that the variety associated to a Mondrian tableau with two
vector spaces [ei, ej], [ek, el] with j < k is isomorphic to a product of
projective spaces Pj−i × Pl−k.

Exercise 3.7. Show that the variety X(M) associated to M can alter-
natively be described as the locus of k-planes Ω such that the dimension
of intersection of Ω with any vector space W spanned by a set of basis
elements is greater than or equal to the number of subspaces of M
contained in W

dim(Ω ∩W ) ≥ #{Wi ∈M | Wi ⊆ W}.
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Theorem 3.8. The variety X(M) associated to a Mondrian tableau
M is irreducible of dimension

dim(X(M)) =
k∑
i=1

dim(Wi)−
k∑
i=1

#{Wj ∈M | Wj ⊆ Wi}.

Proof. This theorem is proved by induction on the number of vector
spaces constituting M . If M consists of one vector space [ei, ej], then
X(M) ∼= Pj−i and the theorem holds. LetWi be the largest dimensional
vector space in M with minimal #l(W ). Let M ′ be the Mondrian
tableau obtained by omitting Wi. Then there is a dominant morphism
from a Zariski open dense subset of X(M) to X(M ′). Consider the
Zariski open subset U of X(M) consisting of k-planes Ω that have a
basis v1, . . . , vk with vj ∈ Wj such that vi is not contained in the span
of the intersections of Ω with Wj for j 6= i. Note that this set is non-
empty by the definition of a Mondrian tableau. Mapping Ω to the span
of v1, . . . , vi−1, vi+1, . . . , vk, we obtain a morphism φ from U to X(M ′).
The map φ is dominant. We can assume by induction that X(M ′) is
irreducible of dimension

k∑
j=1,j 6=i

dim(Wi)−
k∑

j=1,j 6=i

#{Wl ∈M ′ | Wl ⊆ Wj}.

The fiber of φ over a point Ω′ in the image of φ consists of k-planes that
contain Ω′ and are spanned by Ω′ and a vector vi ∈ Wi. The k-plane
then is determined by the choice of vi which is allowed to vary in an
open subset of a projective space of dimension

dim(Wi)−#{Wj ∈M | Wj ⊆ Wi}.
The irreducibility and dimension formula follow from these considera-
tions. �

Exercise 3.9. Show that if the vector spaces constituting a Mondrian
tableau M are totally ordered by inclusion W1 ⊂ · · · ⊂ Wk, then
X(M) is a Schubert variety. In this case, verify the dimension formula
in Theorem 3.8 directly.

Definition 3.10. We will call any Mondrian tableau M with the prop-
erty that the vector spaces Wi ∈ M are totally ordered by inclusion
W1 ⊂ · · · ⊂ Wk and dim(Wi) = n − k + i − λi a Mondrian tableau
associated to the Schubert cycle σλ1,...,λk

.

The intersection of two Schubert varieties in general position can also
be represented by a Mondrian tableau. Let λ and µ be two partitions
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such that λi + µk−i+1 ≤ n − k for every i. The product of the two
Schubert cycles σλ and σµ is non-zero if and only if this condition is
satisfied. Represent the cycle σλ by a totally ordered Mondrian tableau
Λ1 ⊂ · · · ⊂ Λk such that l(Λi) = e1 for every i. Represent σµ by the
totally ordered Mondrian tableau Γ1 ⊂ · · · ⊂ Γk such that r(Γi) = en.
Let the Mondrian tableau M(λ, µ) associated to the product σλ · σµ be
the Mondrian tableau with vector spaces Wi = Λi∩Γk−i+1. See Figure
3 for an example.

Figure 3. The Mondrian tableau representing the product
σ4,2,2,1 · σ3,2,1,1 in G(4, 9). The panel on the left depicts the Mon-
drian tableaux depicting the two Schubert varieties superimposed
on the same n× n grid.

Exercise 3.11. Show that X(M(λ, µ)) is equal to the intersection
Σλ(F•) ∩ Σµ(G•), where Fi = [e1, ei] and Gj = [en, en−j+1].

Exercise 3.12. Show that if M is a Mondrian tableau representing the
product of two Schubert cycles in G(k, n), then Wi 6⊂ Wj for any i 6= j.
Conversely, show that any Mondrian tableau satisfying this property
represents the product of two Schubert cycles in a Grassmannian.

Figure 4. Two Mondrian tableaux M1,M2 with X(M1) = X(M2).

The same variety can be represented by different Mondrian tableaux.
For example, consider the two Mondrian tableauxM1 = {[e1, e2], [e1, e4]}
and M2 = {[e1, e2], [e2, e4]} for G(2, 4) depicted in Figure ??. Requiring
a two dimensional subspace to be contained in [e1, e4] or to intersect
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[e2, e4] are both vacuous conditions, so both of these Mondrian tableaux
define the Schubert variety Σ1.

Definition 3.13. A Mondrian tableau is called normalized if the fol-
lowing two conditions hold.
(1) l(Wi) 6= l(Wj) for i 6= j.
(2) If Wi ⊂ Wj and r(Wi) = r(Wj), then Wi ⊂ Wk for any Wk with
#l(Wk) ≤ #l(Wj).

Algorithm 3.14 (Normalization Algorithm). Given a Mondrian tableau
M satisfying Condition (2) in Definition 3.13, we can replace it with a
normalized Mondrian tableau by running the following algorithm.

• As long as M is not normalized, let ea be the minimal index
vector for which there exists Wi,Wj ∈ M with i 6= j such that
l(Wi) = l(Wj) = ea. Let Wi ( Wj be the two vector spaces in
M of minimal dimension such that l(Wi) = l(Wj) = ea. Replace
Wj with [ea+1, r(Wj)].

Figure 5. Running two steps of the Normalization Algorithm on
a Mondrian tableau.

Exercise 3.15. If M ′ is obtained from M by applying Algorithm 3.14,
then M ′ is a Mondrian tableau and X(M ′) = X(M).

Exercise 3.16. Show that every Mondrian variety can be represented
by a Mondrian tableau with the property that l(Wi) 6= l(Wj) and
r(Wi) 6= r(Wj) for i 6= j.

Exercise 3.17. Let G be an algebraic group and let P be a para-
bolic subgroup. A Richardson variety R(u, v) in the homogeneous va-
riety G/P is in the scheme theoretic intersection of a Schubert variety
Xu with a general translate of a Schubert variety gXv with g ∈ G.
It is known that Richardson varieties are reduced and irreducible.
Show that if R(u, v) is a Richardson variety in a partial flag variety
F (k1, . . . , kr;n), then its natural projection to G(kr, n) is a Mondrian
variety. Conversely, show that every Mondrian variety arises this way.

Our goal is to compute the cohomology class of X(M). As in the
fundamental example worked out above, we will do this by degenerating
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one of the vector spaces Wi encoded by M . We begin by describing
which vector space to degenerate.

Definition 3.18. A vector space Wi in a Mondrian tableau M is nested
if the following two conditions hold:

• For every Wj ∈M either Wj ⊂ Wi or Wi ⊂ Wj.
• The set of vector spacesWj ∈M containingWi is totally ordered

by inclusion.

We call a vector space which is not nested unnested.

Definition 3.19. Let M be a Mondrian tableau whose vector spaces
are not totally ordered by inclusion. The degenerating vector space
Wi ∈ M be the vector space with minimal #l(Wi) among the vec-
tor spaces of M that are unnested and the set of vector spaces of M
contained in Wi is totally ordered by inclusion.

Definition 3.20. A neighbor of the degenerating vector space Wi =
[ea, eb] is any vector space Wj of M satisfying the following properties.

(1) #l(Wi) < #l(Wj)
(2) eb+1 ∈ Wj

(3) If #l(Wi) < #l(Wk) < #l(Wj), either Wk ⊂ Wi or Wj ⊂ Wk.

Notation 3.21. Let M be a normalized Mondrian tableau for G(k, n).
Assume that the vector spaces in M are not totally ordered by inclu-
sion. Let Wi = [ea, eb] be the degenerating vector space of M . Let
N1, . . . , Nr be the neighbors of Wi in M ordered from smallest dimen-
sion to largest. Let W ′

i = [ea+1, eb+1]. Let Mj, 1 ≤ j ≤ r be the Mon-
drian tableaux obtained by replacing Wi and Nj in M with W ′

i ∩ Nj

and WiNj

Mj = (M − {Wi, Nj}) ∪ {W ′
i ∩Nj,WiNj}.

If N1 6⊂ W ′
i , let M0 be the Mondrian tableau obtained by normalizing

the Mondrian tableau obtained by replacing Wi with W ′
i .

Algorithm 3.22 (The Geometric Littlewood-Richardson Rule). Let
M be a normalized Mondrian tableau for G(k, n). If the vector spaces
in M are totally ordered by inclusion, the Algorithm terminates. Oth-
erwise, replace M by the following Mondrian tableaux.

• If N1 ⊂ W ′
i , then replace M by M1.

• If N1 6⊂ W ′
i and equality holds in Equation 3 for Wi and Nr,

then replace M by Mj for 1 ≤ j ≤ r.
• Otherwise, replace M by Mj for 0 ≤ j ≤ r.
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Example 3.23. The example in Figure 6 applies Algorithm 3.22 to
the Mondrian tableau

M = {[e1, e4], [e3, e8], [e4, e6], [e5, e7]}.

The degenerating vector space is [e1, e4]. Algorithm 3.22 replaces M
with the following three Mondrian tableaux depicted in Figure 6 in
clockwise order.

M0 = {[e2, e5], [e3, e8], [e4, e6], [e5, e7]}.

M1 = {[e1, e6], [e3, e8], [e4, e5], [e5, e7]}.

M2 = {[e1, e8], [e3, e5], [e4, e6], [e5, e7]}.

Figure 6. An example of Algorithm 3.22

Definition 3.24. A degeneration path for M consists of a sequence
of Mondrian tableaux M1,M2, . . . ,Mr such that M = M1, Mr is a
Mondrian tableau associated to a Schubert variety and Mj is one of
the Mondrian tableau replacing Mj−1 in Algorithm 3.22.

Theorem 3.25. Let M be a normalized Mondrian tableau. Then the
cohomology class [X(M)] =

∑
λ cλσλ, where cλ is the number of de-

generation paths starting with M and ending with a Mondrian tableau
associated to σλ.
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Corollary 3.26. The Littlewood-Richardson coefficient cνλ,µ is the num-
ber of degeneration paths starting with the Mondrian tableau M(λ, µ)
and ending with a Mondrian tableau associated to the Schubert cycle
σν.

The example in 7 shows the product σ2,1 · σ2,1 in G(3, 6).

Figure 7. The calculation σ2,1 · σ2,1 = σ3,3 + 2σ3,2,1 + σ2,2,2 in G(3, 6).

Exercise 3.27. When one of the Schubert cycles is a Pieri cycle, show
that the theorem implies Pieri’s rule.

Exercise 3.28. Using the Geometric Littlewood-Richardson rule cal-
culate σ3,2,1 · σ3,2,1 and σ2,1 · σ3,2,1 in G(4, 8). More generally, calculate
all the Littlewood-Richardson coefficients in small Grassmannians such
as G(2, 5), G(3, 6) and G(3, 7).

Theorem 3.25 can be proved by interpreting Algorithm 3.22 as de-
scribing the flat limits of a degeneration. Let Wi = [ea, eb] be the
degenerating vector space of M . We consider a one parameter family
of ordered bases where we keep all the basis elements except for ea the
same and we replace ea by ea(t) = tea+(1−t)eb+1. As long as t 6= 0 the
one parameter family of varieties X(M(t)) for t 6= 0, where M(t) differs
from M only in that every occurrence of ea is replaced by ea(t). The
fibers of the family X(M(t)) for t ∈ A1 − 0 are all projectively equiv-
alent. Hence, X(M(t)) forms a flat family. Algorithm 3.22 describes
the flat limit at t = 0. Theorem 3.25 is an immediate consequence of
the following geometric theorem.
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Theorem 3.29. The support of the flat limit of the family X(M(t))
at t = 0 is equal to the union of X(Mi), where Mi are the Mondrian
tableaux replacing M in Algorithm 3.22. Furthermore, the flat limit is
generically reduced along every X(Mi).

Proof. The proof has two components. We first have to identify the
limits and then we have to calculate the multiplicity of the limit along
the generic point of each component.

For t 6= 0, let B(t) denote the basis e1, . . . , ea−1, ea(t), ea+1, . . . , en,
where ea(t) = tea + (1− t)eb+1. Let W (t) be a vector space spanned by
elements of the basis B(t). Then the flat limit at t = 0 of W (t) is easy
to describe. If ea(t) 6∈ W (t) or if both ea(t) and eb+1 are in W (t), then
W (t) is a constant vector space and W (t) = W (1) = W (0). The only
interesting case is when ea(t) ∈ W (t) but eb+1 6∈ W (t). In this case, if
W (1) is spanned by a set of basis elements S, then W (0) is spanned
by (S − {ea}) ∪ {eb+1}. The following is the basic observation.

Observation 3.30. Let Ω(t) be a vector space parameterized byX(M(t)).
Then by the definition of a Mondrian variety

dim(Ω(t) ∩W (t)) ≥ {Wj ∈M(1) | Wj ⊂ W (1)}.
Since this is a closed condition, the following inequality must hold for
every vector space Ω(0) parameterized by the flat limit X(M(0)):

dim(Ω(0) ∩W (0)) ≥ {Wj ∈M(1) | Wj ⊂ W (1)},
where W (0) is the flat limit of the vector spaces W (t).

In fact, Observation 3.30 suffices to determine the support of the flat
limit. Every subvariety of the Grassmannian is contained in a Mon-
drian variety since for instance the Grassmannian itself is a Mondrian
variety. Given a component Y of the support of the flat limit, we would
like to describe the minimal dimensional Mondrian varieties containing
it. Observation 3.30 allows us to restrict our attention to very special
tableaux, namely to those that satisfy dim(Ω(0)∩W (0)) ≥ #W (M) =
#{Wj ∈ M(1) | Wj ⊂ W (1)}. We will see that the varieties associ-
ated to such Mondrian tableaux have dimension bounded above by the
dimension of X(M) and those that have the same dimension are the
ones described in Algorithm 3.22. Since flat limits preserve dimension,
we can conclude from these observations that the support of the flat
limit is contained in the union of the varieties X(Mi), where Mi are
the tableaux described in Algorithm 3.22.

Exercise 3.31. Using Theorem 3.8, check that dim(X(Mi)) = dim(X(M))
for every Mi replacing M in Algorithm 3.22.
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Suppose that the degenerating vector space is S = [ea, eb]. Then
S(0) = [aa+1, eb+1]. If S(0) contains the smallest neighbor N1 of S,
then X(M) = X(M1). In this case, Algorithm 3.22 simply the reverses
the normalization process. We can interpret this case as replacing M
by a tableau that represents the same variety. This agrees with Step
1 of Algorithm 3.22. From now on we can assume that S(0) does not
contain N1.

Let Y be an irreducible component of the flat limit X(M(0)) of
dimension equal to the dimension of X(M). By the Observation 3.30
the k-planes parameterized by Y have to intersect the vector spaces
Wi(0) for Wi ∈ M in dimension at least #Wi(M). Let Λ be a general
k-plane parameterized by Y . Suppose that the dimension dim(Λ ∩
Wi(0)) = #Wi(M) and Λ is spanned by its intersections with Wi(0).
It follows that the support of Y has to be contained in X(M0). Since
they are both irreducible varieties of the same dimension, we conclude
that Y = X(M0).

Exercise 3.32. Show that if equality holds in Equation (3) for S and
the largest neighbor of S in M , then dim(X(M0)) < dim(X(M)). If
the smallest neighbor of S is not contained in S(0) and there is strict
inequality in Equation (3) for S and the largest neighbor of S in M ,
then dim(X(M0)) = dim(X(M)).

We can now assume that for a general point Λ ∈ Y , the subspaces of
Λ contained in Wi(0) do not span Λ. Hence, the subspaces contained in
two of the vector spaces Wi(0) and Wj(0) must intersect in a subspace
of dimension greater than #(Wi(0) ∩ Wj(0). Let T be the smallest
dimensional linear space that is the span of consecutive basis elements
with the property that the intersection of Λ with T has dimension
larger than the number of vector spaces of M0 contained in T . If there
is more than one vector space with the same dimension, let T be the one
that contains a basis element with least index. List the minimal vector
spaces of M0 with respect to inclusion Wi1(0), . . . ,Wim(0) that contain
T in order of their lower-left most corners. The fact that Λ intersects
T leads the conditions imposed by Wi1(0), . . . ,Wim(0) to be automat-
ically satisfied. However, by Observation 3.30 any k-plane in the flat
limit must still intersect the limit of the spans WihWih+1(0) in dimen-
sion equal to #WihWih+1(M)Hence, we can replace the tableau M0,
by the tableau where we remove the vector spaces Wi1(0), . . . ,Wim(0)
and include the vector spaces T,Wi1Wi2(0), . . . ,Wim−1Wim(0). Call the
resulting tableau U1. If Λ is spanned by its intersection with these
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new set of vector spaces, then, by Observation 3.30, Y has to be con-
tained in X(U1). Otherwise, we repeat the process. Since this cannot
go on indefinitely, we obtain a tableau Ua such that Y is contained in
X(U(a)).

The first step will be complete if we can show that the variety asso-
ciated to every tableau other than M1, . . . ,Mr obtained by this process
has dimension strictly smaller than dim(ΣM).

First observe that the sum of the dimensions of the vector spaces
of Ur is at most one more than the sum of the vector spaces of M .
Let W1, . . . ,Wj be a collection of vector spaces ordered by l(Wi) that
have a non-empty intersection. Let WhWh+1 denote the span of the
consecutive vector spaces. Then we have the easy observation that

j∑
h=1

dim(Wh) = dim(W1 ∩W2 ∩ · · · ∩Wj) +

j−1∑
h=1

dim(WhWh+1).

Hence the procedure preserves or decreases the total sum of the di-
mensions of the vector spaces, unless W1 is the vector space being
degenerated and W2 contains ej+1 but not ei. In the latte case, the
sum of the dimensions increases by one. Since the degenerating vector
space occurs at most once during the process, the total sum of the
dimensions is at most one larger.

Second we observe that the process increases the total number of con-
tainment relations among the vector spaces by at least j − 1. Initially,
Wh 6⊆ Wl for h 6= l. On the other hand, the intersection T is a subspace
of all WhWh+1. Let W ∈ M be a vector space other than W1, . . . ,Wj,
then the process does not change the number of vector spaces con-
tained in W . The process also does not change the number of vector
spaces containing W unless the #l(Wh) < #l(W ) < #l(Wh+1) and
r(W ) = r(Wh+1) for some h. In this case W ⊂ WhWh+1.

If j = 1, then the sum of the dimensions of the vector spaces de-
creases by at least one since this case corresponds to simply replace one
vector space by a smaller one. Hence to preserve dimension, we must
have j ≥ 2 for each run of the procedure. However, the sum of the di-
mensions of the vector spaces can increase by at most one. We conclude
that in order to obtain a variety with dimension equal to dim(X(M))
we can run the procedure at most once. Furthermore, in this case
j = 2, W1 is the vector space being degenerated and ej+1 ∈ W2. The
vector space T has to be the full intersection of W1 and W2 and if there
is a vector space W with #l(W1) < #l(W ) < #l(W2), then W must
either contain W2 or be contained in W1. We conclude that W2 has to
be a neighbor Ni of the vector space being degenerated. It follows that
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Y = X(Mi) for one of the Mondrian tableau replacing M in Algorithm
3.22.

We thus conclude that the support of ΣM(0) is contained in the
union of the varieties associated to the tableaux described by Step 2 of
the Grassmannian Algorithm. Furthermore, it is easy to write explicit
families of k-planes that show that the support of ΣM(0) is the union
of the varieties associated to the tableaux described by Step 2 of the
Grassmannian Algorithm.

There remains to show that the flat limit X(M(0)) is generically
reduced along each of the components X(Mi). It suffices to check the
multiplicity at the generic point of each irreducible component. With-
out loss of generality, we may assume that the Mondrian tableau M
consists only of the degenerating vector space S and the neighbors
N1, . . . , Nr. Let M → P1 denote the total space of the family of va-
rieties associated to Mondrian tableaux. For t 6= 0, let V (t) be the
vector space which is the span of S(t) and Nr(t). Let V (0) denote the
limit of V (t). Suppose there are p vector spaces in M contained in the
span of the vector spaces S and Nr. Over a dense Zariski-open sub-
set U of M intersecting every component of X(M(0)), the morphism
obtained by restricting the k-planes to their p-dimensional subspaces
contained in V (t) is a smooth morphism. Let T be a vector space con-
tained in S or Nr, but not equal to S or any of the neighbors. After
possibly shrinking U to another Zariski open intersecting every compo-
nent of X(M(0)), the morphism quotienting out the p-planes by their
subspaces contained in T is a smooth morphism. It follows that to de-
termine the multiplicities it suffices to treat the case when the tableau
consists only of S and the neighbors N1, . . . , Nr.

By induction on the number of neighbors, this reduces to a compu-
tation in the Grassmannian of lines. Suppose S has only one neighbor.
Then the multiplicity of each tableau is one and the variety associated
to each tableau occurs as a component of X(M(0)). This easily follows
either by the Pieri rule for the Grassmannian of lines or by an easy cal-
culation almost identical to the calculation in the fundamental example
above. Now suppose r > 1. For t 6= 0, let V (t) denote the span of S(t)
and Nr−1(t). Let V (0) denote the limit of V (t). We can restrict the
(r+ 1)-planes to the r-plane contained in V (t). By induction it follows
that each component occurs with multiplicity one. This concludes the
proof of the theorem.

�
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