BASIC INTERSECTION THEORY ON THE MODULI SPACE OF CURVES

Let E be a vector bundle of $\operatorname{rank} r$. To E, we associate the Chern polynomial

$$
c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{r}(E) .
$$

The Chern roots of E are the formal roots of $c(E)$, that is

$$
c(E)=\prod_{i=1}^{r}\left(1+\alpha_{i}\right) .
$$

The Chern character of E is defined by

$$
\operatorname{ch}(E)=\sum_{i=1}^{r} e^{\alpha_{i}} .
$$

Since the Chern character is symmetric in the Chern roots, it can be expressed in terms of the Chern classes. Simple manipulations with power series show that

$$
\begin{aligned}
\operatorname{ch}(E) & =r+c_{1}(E)+\frac{c_{1}^{2}(E)-2 c_{2}(E)}{2}+\frac{c_{1}^{3}(E)-3 c_{1}(E) c_{2}(E)+3 c_{3}(E)}{6} \\
& +\frac{c_{1}^{4}(E)+4 c_{1}(E) c_{3}(E)-4 c_{1}^{2}(E) c_{2}(E)+2 c_{2}^{2}(E)-4 c_{4}(E)}{24}+\cdots
\end{aligned}
$$

The Chern character is a homomorphism from the Grothendieck K group to cohomology. It is easy to see that it satisfies

$$
\operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \operatorname{ch}(F)
$$

The Todd class is similarly defined as a formal power series in the Chern roots

$$
T d(E)=\prod_{i=1}^{r} \frac{\alpha_{i}}{1-e^{-\alpha_{i}}} .
$$

Since the Todd class is also symmetric in the Chern roots, it has an expression in terms of the Chern classes.

$$
\begin{aligned}
T d(E) & =1+\frac{c_{1}(E)}{2}+\frac{c_{1}^{2}(E)+c_{2}(E)}{12}+\frac{c_{1}(E) c_{2}(E)}{24} \\
& +\frac{-c_{1}^{4}(E)+4 c_{1}^{2}(E) c_{2}(E)+c_{1}(E) c_{3}(E)+3 c_{2}^{2}(E)-c_{4}(E)}{720}+\cdots
\end{aligned}
$$

The Todd class of a variety is the Todd class of its tangent bundle $T d(X)=T d\left(T_{X}\right)$. The Todd class is multiplicative for short each sequences. If

$$
0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0
$$

then $\operatorname{Td}(F)=T d(E) T d(G)$.
Exercise 0.1. Verify the formula for the Todd class. Using the Euler sequence, calculate the Todd class of \mathbb{P}^{n}.

Let $\pi: X \rightarrow Y$ be a proper morphism. Let E be a vector bundle on X. Recall that

$$
\pi_{!}(E)=\sum_{i}(-1)^{i} R^{i} \pi_{*}(E)
$$

Theorem 0.2 (Grothendieck-Riemann-Roch). Let $\pi: X \rightarrow Y$ be a proper morphism. Let E be a vector bundle and assume that Y is smooth. Then

$$
\operatorname{ch}\left(\pi_{!}(E)\right) \cdot \operatorname{Td}(Y)=\pi_{*}(\operatorname{ch}(E) \cdot \operatorname{Td}(X))
$$

As a warm up, we calculate the number of lines on a general cubic surface in \mathbb{P}^{3}. Consider the incidence correspondence

$$
I=\{(p, l) \mid p \in l\} \subset \mathbb{P}^{3} \times \mathbb{G}(1,3) .
$$

The incidence correspondence admits two natural projections π_{1} and π_{2} to \mathbb{P}^{3} and $\mathbb{G}(1,3)$, respectively. We would like to calculate the Chern classes of the bundle $\pi_{2 *} \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(3)$. More generally, for $n \geq 0$, let

$$
\mathcal{F}_{n}=\pi_{2 *} \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(n)
$$

Let us calculate the Chern classes of the bundles \mathcal{F}_{n}.
Let S be the tautological bundle on $\mathbb{G}(1,3)$. The incidence correspondence $I=\mathbb{P} S$ is the two-step flag variety. Let U be the tautological line bundle on I. Then we have the universal sequence

$$
0 \rightarrow U \rightarrow \pi_{2}^{*} S \rightarrow Q \rightarrow 0
$$

The relative tangent bundle of I over $\mathbb{G}(1,3)$ is given by $T_{I / \mathbb{G}(1,3)}=$ $U^{*} \otimes Q$. Let $c_{1}(U)=-h$. Then

$$
c\left(T_{I / \mathbb{G}(1,3)}\right)=1+2 h-\sigma_{1} .
$$

We conclude that

$$
T d\left(T_{I / \mathbb{G}(1,3)}\right)=1+\frac{2 h-\sigma_{1}}{2}+\frac{\left(2 h-\sigma_{1}\right)^{2}}{12}-\frac{\left(2 h-\sigma_{1}\right)^{4}}{720} .
$$

In the cohomology of the flag variety I, we have the relations

$$
h^{2}=h \sigma_{1}-\sigma_{1,1}
$$

. Therefore,

$$
h^{3}=h \sigma_{2}-\sigma_{2,1}
$$

and $h^{4}=0$. Simplifying the expression for the Todd class, we get

$$
T d\left(T_{I / \mathbb{G}(1,3)}\right)=1-\frac{\sigma_{1}}{2}-\frac{\sigma_{1,1}}{4}+\frac{\sigma_{2}}{12}-\frac{\sigma_{2,2}}{72}+h .
$$

We have that

$$
\operatorname{ch}\left(\pi_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{3}}(n)\right)=1+n h+\frac{n^{2} h^{2}}{2}+\frac{n^{3} h^{3}}{6}\right.
$$

Simplifying this expression, we get

$$
\operatorname{ch}\left(\pi_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{3}}(n)\right)=1-\frac{n^{2} \sigma_{1,1}}{2}-\frac{n^{3} \sigma_{2,1}}{6}+\left(n+\frac{n^{2} \sigma_{1}}{2}+\frac{n^{3} \sigma_{2}}{6}\right) h\right.
$$

When $n \geq 0, \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(n)$ has no higher cohomology on the fibers of π_{2}. Therefore,

$$
\pi_{2!} \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(n)=\pi_{2 *} \pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(n)
$$

Hence, by the Grothendieck-Riemann-Roch Theorem, we conclude that

$$
\operatorname{ch}\left(\mathcal{F}_{n}\right)=\pi_{2 *}\left(\operatorname{ch}\left(\pi_{1}^{*}\left(\mathcal{O}_{\mathbb{P}^{3}}(n)\right) \cdot \operatorname{Td}\left(T_{I / \mathbb{G}(1,3)}\right)\right) .\right.
$$

Multiplying out
$\left(1-\frac{n^{2} \sigma_{1,1}}{2}-\frac{n^{3} \sigma_{2,1}}{6}+\left(n+\frac{n^{2} \sigma_{1}}{2}+\frac{n^{3} \sigma_{2}}{6}\right) h\right)\left(1-\frac{\sigma_{1}}{2}-\frac{\sigma_{1,1}}{4}+\frac{\sigma_{2}}{12}-\frac{\sigma_{2,2}}{72}+h\right)$
and simplifying and taking the Gysin image, we obtain that the Chern character of \mathcal{F}_{n} is given by
$\operatorname{ch}\left(\mathcal{F}_{n}\right)=n+1+\frac{n^{2}+n}{2} \sigma_{1}-\frac{n^{2}+n}{4} \sigma_{1,1}+\frac{2 n^{3}+3 n^{2}+n}{12} \sigma_{2}-\frac{n^{3}+n^{2}}{12} \sigma_{2,1}-\frac{n^{3}-n}{72} \sigma_{2,2}$.
We can now solve for the Chern classes of \mathcal{F}_{n} successively. As expected, the rank of \mathcal{F}_{n} is $n+1$.

$$
c_{1}\left(\mathcal{F}_{n}\right)=\frac{n^{2}+n}{2} \sigma_{1} .
$$

Exercise 0.3. Calculate the higher Chern classes of \mathcal{F}_{n}. Show that $\mathcal{F}_{1}=S^{*}$ and in that case we recover that $c_{1}\left(S^{*}\right)=\sigma_{1}$ and $c_{2}\left(S^{*}\right)=\sigma_{1,1}$. Show that more generally $\mathcal{F}_{n}=\operatorname{Sym}^{n}\left(S^{*}\right)$. Show that $c_{1}\left(\mathcal{F}_{3}\right)=6 \sigma_{1}$, $c_{2}\left(\mathcal{F}_{3}\right)=21 \sigma_{1,1}+11 \sigma_{2}, c_{3}\left(\mathcal{F}_{3}\right)=43 \sigma_{2,1}$ and $c_{4}\left(\mathcal{F}_{3}\right)=27 \sigma_{2,2}$.

We now apply the Grothendieck-Riemann-Roch formula to obtain relations among classes on the moduli space of curves. First, suppose that $\pi: X \rightarrow B$ is a smooth one parameter family of stable curves of
genus g. Let $\gamma=c_{1}\left(\omega_{X / B}\right)$. The relative tangent bundle is the dual of the dualizing sheaf. Hence,

$$
T d\left(\omega_{X / B}^{*}\right)=1-\frac{\gamma}{2}+\frac{\gamma^{2}}{12}+\cdots
$$

By the Grothendieck-Riemann-Roch formula,

$$
\begin{aligned}
\operatorname{ch}\left(\pi!\omega_{X / B}\right) & =\pi_{*}\left(1-\frac{\gamma}{2}+\frac{\gamma^{2}}{12}+\cdots\right)\left(1+\gamma+\frac{\gamma^{2}}{2}+\cdots\right) \\
& =\pi_{*}\left(1+\frac{\gamma}{2}+\frac{\gamma^{2}}{12}+\cdots\right) .
\end{aligned}
$$

$R^{1} \pi_{*}\left(\omega_{X / B}\right)$ is the trivial bundle. Hence,

$$
\operatorname{ch}\left(\pi!\omega_{X / B}\right)=\operatorname{ch}(\Lambda)-1 .
$$

Equating the two sides, we see that

$$
c_{1}(\Lambda)=\frac{\kappa}{12}, \quad c_{2}(\Lambda)=\frac{\kappa^{2}}{288} .
$$

If the family is not smooth, the calculation has to be slightly altered. Suppose that $\pi: X \rightarrow B$ is a one-parameter family of stable curves. Resolve any A_{k} singularity by blowing up $\nu: Y \rightarrow X$, to obtain a semi-stable family with smooth total space $\phi: Y \rightarrow B$. Since the singularities of X are canonical, $\nu^{*}\left(\omega_{X / B}\right)=\omega_{Y / B}$. Let

$$
\delta=\delta_{0}+\delta_{1}+\cdots+\delta_{\left\lfloor\frac{g}{2}\right\rfloor}
$$

Let Z in Y be the locus of nodes in the fibers of ϕ. Then $\phi_{*}([Z)=\delta \cdot B$. We have to calculate the contribution of the nodes in Y to the relative dualizing sheaf. The local equations at the node are $t=x y$. The map $\phi^{*} T_{B}^{*} \rightarrow T_{Y}^{*}$ is very explicitly given by $\mathcal{O}_{Y}(d t) \rightarrow \mathcal{O}_{Y}(d x, d y)$ sending

$$
d t \mapsto x d y+y d x
$$

The cokernel is the relative cotangent sheaf

$$
\Omega_{Y / B}=\frac{\mathcal{O}_{Y}(d x, d y)}{\langle x d y+y d x\rangle}
$$

The relative dualizing sheaf is the locally free rank one sheaf whose restriction to $Y \backslash Z$ is isomorphic to the relative cotangent bundle.

Hence, $\Omega_{Y / B}=I_{Z} \otimes \omega_{Y / B}$. Let η be the class of Z. Applying Grothendieck-Riemann-Roch to the inclusion $i: Z \rightarrow Y$, we get that

$$
\operatorname{ch}\left(i_{*} \mathcal{O}_{Z}\right)=i_{*}\left(\operatorname{ch}\left(\mathcal{O}_{Z}\right) \cdot \operatorname{Td}\left(T_{Z}-i * T_{Y}\right)\right)=i_{*}(\eta)
$$

Using the standard exact sequence

$$
0 \rightarrow I_{Z} \rightarrow \underset{4}{\mathcal{O}_{Y}} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

we get that

$$
\operatorname{ch}\left(I_{Z}\right)=1-\eta .
$$

Combining these results, we have that

$$
\begin{gathered}
\operatorname{ch}(\Omega)=\operatorname{ch}(\omega) \operatorname{ch}\left(I_{Z}\right)=1+\gamma+\left(\frac{\gamma^{2}}{2}-\eta\right)+\cdots \\
T d(Y / B)=1-\frac{\gamma}{2}+\frac{\gamma^{2}+\eta}{12}+\cdots
\end{gathered}
$$

Finally, we get that $\kappa=12 \lambda-\delta$.

References

[EH] David Eisenbud and Joe Harris. The geometry of schemes, volume 197 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
[Ful1] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997.
[Ful2] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, second edition, 1998.
[GH] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley Interscience, 1978.
[H] J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[HM] J. Harris and I. Morrison. Moduli of curves. Springer-Verlag, 1998.
[Ha] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[Kl1] S. L. Kleiman. The transversality of a general translate. Compositio Math. 28(1974), 287297.
[Kl2] S. L. Kleiman. Problem 15: Rigorous foundation of Schubert's enumerative calculus. In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pages 445-482. Proc. Sympos. Pure Math., Vol. XXVIII. Amer. Math. Soc., Providence, R. I., 1976.
[KL] S. L. Kleiman and D. Laksov. Schubert calculus. Amer. Math. Monthly 79(1972), 1061-1082.
[KT] A. Knutson and T. Tao. Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119(2003), 221-260.
[K] J. Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 1996.
[V1] R. Vakil. A geometric Littlewood-Richardson rule. to appear Ann. of Math.
[V2] R. Vakil. Schubert induction. to appear Ann.of Math.

