Math 121 – Exam 1 Solutions

- 1. (20 pts) The graph of a polynomial function f(x) is shown below. Answer the following:
 - (a) Is f(x) an even function, an odd function, or neither?
 - (b) On what interval(s) is f(x) increasing?
 - (c) What is the minimum degree of f(x)?
 - (d) Locate all real zeros of f(x) and state whether the multiplicity of each zero is even or odd.

(Each square in the grid has a side of length 1.)

Solution:

- (a) The function is neither odd nor even.
- (b) f(x) is increasing on (0, 4) and $(9, \infty)$
- (c) The minimum degree of f(x) is 4 (there are 3 turning points).
- (d) The real zeros of f(x) are x = 0 (even multiplicity), x = 7 (odd multiplicity), and x = 11 (odd multiplicity).
- 2. (15 pts) Write the rule of the function g(x) obtained by performing the following transformations on the function $f(x) = 2x^2 + 1$: (1) shift 4 units downward, (2) shift 1 unit to the right, and (3) expand vertically by a factor of 5.

Solution:

 $2x^2 + 1 \rightarrow 2x^2 - 3$ (after shifting 4 units downward) $2x^2 - 3 \rightarrow 2(x - 1)^2 - 3$ (after shifting 1 unit to the right) $2(x - 1)^2 - 3 \rightarrow 10(x - 1)^2 - 15$ (after expanding vertically by a factor of 5) Thus, $g(x) = 10(x - 1)^2 - 15$]. 3. (10 pts) Find the vertex and axis of symmetry of $f(x) = 3x^2 - 24x - 17$.

Solution: To find the vertex and axis of symmetry, we will complete the square:

$$f(x) = 3x^2 - 24x - 17$$

= 3(x² - 8x) - 17
= 3(x² - 8x + 16) - 17 - 3(16)
= 3(x - 4)² - 65

Therefore, the vertex is (4, -65) and the axis of symmetry is x = 4.

4. (10 pts) Solve the inequality: $\frac{x+2}{x-2} \ge 0$.

Solution: To solve the inequality, we first note that the roots of the numerator and denominator are x = -2 and x = 2, respectively. Let $f(x) = \frac{x+2}{x-2}$. Then, using the following table:

Interval	$(-\infty, -2)$	(-2, 2)	$(2,\infty)$
Number Chosen	-3	0	3
Value of f	$f(-3) = \frac{1}{5}$	f(0) = -1	f(3) = 5
Conclusion	positive	negative	positive

Since $f(x) \ge 0$, the solution is $x \le -2$ or x > 2

- 5. (20 pts) Consider the rational function $R(x) = \frac{x^2(x+2)}{x^2+4x+4}$.
 - (a) What is the domain of R(x)?
 - (b) Find all vertical asymptotes of R(x), if any.
 - (c) Does the graph of R(x) contain a hole? If so, where?
 - (d) Find the oblique asymptote of R(x).

6. (15 pts) Consider the function $f(x) = 2x^3 + x^2 + 4x - 15$.

- (a) List all possible rational zeros of f(x).
- (b) Given that x = -1 + 2i is a zero of f(x), find all remaining zeros.

Solution:

(a) The factors of $a_0 = -15$ are $\pm 1, \pm 3, \pm 5, \pm 15$. The factors of $a_3 = 2$ are $\pm 1, \pm 2$. Therefore, the possible rational zeros are:

$$\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$$

- (b) Since x = -1 + 2i is a zero, so is its conjugate x = -1 2i. Since $f\left(\frac{3}{2}\right) = 0$, the last remaining zero is $x = \frac{3}{2}$.
- 7. (10 pts) Let $f(x) = \frac{2}{x-3}$ and g(x) = x+1.
 - (a) Compute $(f \circ g)(1)$.
 - (b) Write the rule for $f^{-1}(x)$.

Solution:

- (a) $(f \circ g)(1) = f(g(1)) = f(2) = -2$
- (b) To find the rule for $f^{-1}(x)$, we first write:

$$y = \frac{2}{x-3}$$

Switching x and y we have:

$$x = \frac{2}{y-3}$$

Solving for y we get:

$$x = \frac{2}{y-3}$$
$$y-3 = \frac{2}{x}$$
$$y = 3 + \frac{2}{x}$$

Therefore, $f^{-1}(x) = 3 + \frac{2}{x}$.