Math 121 - Exam 1 Solutions

1. (20 pts) The graph of a polynomial function $f(x)$ is shown below. Answer the following:
(a) Is $f(x)$ an even function, an odd function, or neither?
(b) On what interval(s) is $f(x)$ increasing?
(c) What is the minimum degree of $f(x)$?
(d) Locate all real zeros of $f(x)$ and state whether the multiplicity of each zero is even or odd.
(Each square in the grid has a side of length 1.)

Solution:

(a) The function is neither odd nor even.
(b) $f(x)$ is increasing on $(0,4)$ and $(9, \infty)$
(c) The minimum degree of $f(x)$ is 4 (there are 3 turning points).
(d) The real zeros of $f(x)$ are $x=0$ (even multiplicity), $x=7$ (odd multiplicity), and $x=11$ (odd multiplicity).
2. (15 pts) Write the rule of the function $g(x)$ obtained by performing the following transformations on the function $f(x)=2 x^{2}+1$: (1) shift 4 units downward, (2) shift 1 unit to the right, and (3) expand vertically by a factor of 5 .

Solution:

$$
\begin{aligned}
& 2 x^{2}+1 \rightarrow \\
& 2 x^{2}-3 \rightarrow \quad 2(x-1)^{2}-3 \quad(\text { after shifting } 4 \text { units downward) } \\
& 2(x-1)^{2}-3 \rightarrow 10(x-1)^{2}-15 \quad \text { (after shifting } 1 \text { unit to the right) } \\
& 2(\text { afteranding vertically by a factor of } 5)
\end{aligned}
$$

Thus, $g(x)=10(x-1)^{2}-15$.
3. (10 pts) Find the vertex and axis of symmetry of $f(x)=3 x^{2}-24 x-17$.

Solution: To find the vertex and axis of symmetry, we will complete the square:

$$
\begin{aligned}
f(x) & =3 x^{2}-24 x-17 \\
& =3\left(x^{2}-8 x\right)-17 \\
& =3\left(x^{2}-8 x+16\right)-17-3(16) \\
& =3(x-4)^{2}-65
\end{aligned}
$$

Therefore, the vertex is $(4,-65)$ and the axis of symmetry is $x=4$.
4. (10 pts) Solve the inequality: $\frac{x+2}{x-2} \geq 0$.

Solution: To solve the inequality, we first note that the roots of the numerator and denominator are $x=-2$ and $x=2$, respectively. Let $f(x)=\frac{x+2}{x-2}$. Then, using the following table:

Interval	$(-\infty,-2)$	$(-2,2)$	$(2, \infty)$
Number Chosen	-3	0	3
Value of f	$f(-3)=\frac{1}{5}$	$f(0)=-1$	$f(3)=5$
Conclusion	positive	negative	positive

Since $f(x) \geq 0$, the solution is $x \leq-2$ or $x>2$.
5. (20 pts) Consider the rational function $R(x)=\frac{x^{2}(x+2)}{x^{2}+4 x+4}$.
(a) What is the domain of $R(x)$?
(b) Find all vertical asymptotes of $R(x)$, if any.
(c) Does the graph of $R(x)$ contain a hole? If so, where?
(d) Find the oblique asymptote of $R(x)$.
6. (15 pts) Consider the function $f(x)=2 x^{3}+x^{2}+4 x-15$.
(a) List all possible rational zeros of $f(x)$.
(b) Given that $x=-1+2 i$ is a zero of $f(x)$, find all remaining zeros.

Solution:

(a) The factors of $a_{0}=-15$ are $\pm 1, \pm 3, \pm 5, \pm 15$. The factors of $a_{3}=2$ are $\pm 1, \pm 2$. Therefore, the possible rational zeros are:

$$
\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}
$$

(b) Since $x=-1+2 i$ is a zero, so is its conjugate $x=-1-2 i$. Since $f\left(\frac{3}{2}\right)=0$, the last remaining zero is $x=\frac{3}{2}$.
7. $(10 \mathrm{pts})$ Let $f(x)=\frac{2}{x-3}$ and $g(x)=x+1$.
(a) Compute $(f \circ g)(1)$.
(b) Write the rule for $f^{-1}(x)$.

Solution:

(a) $(f \circ g)(1)=f(g(1))=f(2)=-2$
(b) To find the rule for $f^{-1}(x)$, we first write:

$$
y=\frac{2}{x-3}
$$

Switching x and y we have:

$$
x=\frac{2}{y-3}
$$

Solving for y we get:

$$
\begin{aligned}
x & =\frac{2}{y-3} \\
y-3 & =\frac{2}{x} \\
y & =3+\frac{2}{x}
\end{aligned}
$$

Therefore, $f^{-1}(x)=3+\frac{2}{x}$

