Math 121 - Exam 2 Solutions

1. (12 pts) Complete each of the following.
(a) Find the EXACT value of $\log _{2} 16$.
(b) Find the EXACT value of $3^{2 \log _{3} 4}$.
(c) If $u=\ln 2$ and $v=\ln 3$, write the following expression in terms of u and v :

$$
\ln 8+\ln 9-\ln 12
$$

(d) Write the following expression as a single logarithm.

$$
\log _{2} x^{2}-\log _{2}(x+2)+3 \log _{2}(x-1)
$$

Solution:

(a) $\log _{2} 16=\log _{2} 2^{4}=4 \log _{2} 2=4$
(b) $3^{2 \log _{3} 4}=3^{\log _{3} 4^{2}}=3^{\log _{3} 16}=16$
(c) $\ln 8+\ln 9-\ln 12=\ln \left(\frac{8 \cdot 9}{12}\right)=\ln 6=\ln (2 \cdot 3)=\ln 2+\ln 3=u+v$
(d) $\log _{2} x^{2}-\log _{2}(x+2)+3 \log _{2}(x-1)=\log _{2}\left[\frac{x^{2}(x-1)^{3}}{x+2}\right]$
2. (15 pts) Find all possible solutions to the following equation:

$$
\log _{2} x+\log _{2}(x-8)=3
$$

Solution:

$$
\begin{aligned}
\log _{2} x+\log _{2}(x-8) & =3 \\
\log _{2}[x(x-8)] & =3 \\
x(x-8) & =2^{3} \\
x^{2}-8 x & =8 \\
x^{2}-8 x-8 & =0
\end{aligned}
$$

Using the quadratic equation to solve for x we get:

$$
\begin{aligned}
& x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(-8)}}{2(1)} \\
& x=\frac{8 \pm \sqrt{64+32}}{2} \\
& x=\frac{8 \pm \sqrt{96}}{2} \\
& x=\frac{8 \pm 4 \sqrt{6}}{2} \\
& x=4 \pm 2 \sqrt{6}
\end{aligned}
$$

We eliminate the negative root since $\log _{2}(4-2 \sqrt{6})$ does not exist. Therefore, the answer is $x=4+2 \sqrt{6}$.
3. (15 pts) Find all possible solutions to the following equation:

$$
\left(e^{4}\right)^{x} \cdot e^{x^{2}}=e^{12}
$$

Solution:

$$
\begin{aligned}
\left(e^{4}\right)^{x} \cdot e^{x^{2}} & =e^{12} \\
e^{4 x} e^{x^{2}} & =e^{12} \\
e^{4 x+x^{2}} & =e^{12} \\
4 x+x^{2} & =12 \\
x^{2}+4 x-12 & =0 \\
(x+6)(x-2) & =0 \\
x=-6, x & =2
\end{aligned}
$$

Both are solutions since the domain of the exponential function is all real numbers. Therefore, $x=-6,2$.
4. (16 pts) A detective is called to investigate the scene of a crime where a dead body has been found. She measures the body temperature to be $80^{\circ} \mathrm{F}$ at 10:09 PM . The thermostat in the room where the body lies reads $68^{\circ} \mathrm{F}$. The temperature of the body is taken exactly 1 hour later and is found to be $78^{\circ} \mathrm{F}$. Use Newton's Law of Cooling (t measured in hours) to answer the following questions.

$$
u(t)=T+\left(u_{0}-T\right) e^{k t}, \quad k<0
$$

(a) Determine the decay constant k and write your answer to three decimal places.
(b) Using the value of k found in part (a), estimate the time of death assuming that the victim's body temperature was $98.6^{\circ} \mathrm{F}$ prior to death. Write your answer in the form $\mathrm{xx}: \mathrm{xx}$ PM.
(Hint: Find the value of t such that $u(t)=98.6^{\circ} \mathrm{F}$. The value of t you get should be negative. Then backtrack from 10:09 PM to figure out the time of death.)

Solution:

(a) Here we have $T=68$ and $u_{0}=80$. Using the fact that $u(1)=78$, we solve for k :

$$
\begin{aligned}
u(t) & =T+\left(u_{0}-T\right) e^{k t} \\
u(1) & =68+(80-68) e^{k(1)} \\
78 & =68+12 e^{k} \\
10 & =12 e^{k} \\
\frac{10}{12} & =e^{k} \\
e^{k} & =\frac{5}{6} \\
k & =\ln \frac{5}{6} \approx-0.182
\end{aligned}
$$

(b) To find the time of death, we find the value of t such that $u(t)=98.6$:

$$
\begin{aligned}
98.6 & =68+(80-68) e^{-0.182 t} \\
30.6 & =12 e^{-0.182 t} \\
e^{-0.182 t} & =\frac{30.6}{12} \\
-0.182 t & =\ln \frac{30.6}{12} \\
t & =-\frac{\ln \frac{30.6}{12}}{0.182} \approx 5.14
\end{aligned}
$$

5.14 hours is the equivalent of 5 hours, 9 minutes (to the nearest minute). Therefore, the time of death is approximately 5:00 PM.
5. (12 pts) Find the EXACT values of the following expressions:
(a) $\cos 30^{\circ}$
(b) $\tan \frac{3 \pi}{4}$
(c) $\sec 240^{\circ}$
(d) $\csc \frac{5 \pi}{6}$

Solution:

(a) $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
(b) $\tan \frac{3 \pi}{4}=-1$
(c) $\sec 240^{\circ}=-2$
(d) $\csc \frac{5 \pi}{6}=2$
6. (15 pts) Given that $\tan \theta=\frac{1}{2}$ and $\sin \theta<0$, compute $\cos \theta, \sin (-\theta)$, and $\cot \theta$.

Solution: Since $\tan \theta>0$ and $\sin \theta<0$, we must have $\cos \theta<0$. Then use an identity to compute $\sec \theta$:

$$
\begin{aligned}
\tan ^{2} \theta+1 & =\sec ^{2} \theta \\
\left(\frac{1}{2}\right)^{2}+1 & =\sec ^{2} \theta \\
\frac{1}{4}+1 & =\sec ^{2} \theta \\
\sec ^{2} \theta & =\frac{5}{4} \\
\sec \theta & =-\frac{\sqrt{5}}{2}
\end{aligned}
$$

We used the negative root above since $\cos \theta<0 \Rightarrow \sec \theta<0$. Therefore,

$$
\cos \theta=\frac{1}{\sec \theta}=-\frac{2}{\sqrt{5}}
$$

Using another identity, we find $\sin \theta$:

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin ^{2} \theta+\left(-\frac{2}{\sqrt{5}}\right)^{2} & =1 \\
\sin ^{2} \theta+\frac{4}{5} & =1 \\
\sin ^{2} \theta & =\frac{1}{5} \\
\sin \theta & =-\frac{1}{\sqrt{5}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sin (-\theta) & =-\sin \theta=\frac{1}{\sqrt{5}} \\
\cot \theta & =\frac{1}{\tan \theta}=2
\end{aligned}
$$

7. (15 pts) Find values of A, ω, and ϕ such that the graph of $y=A \sin (\omega x-\phi)$ has the following properties:

$$
\text { amplitude }=2, \quad \text { period }=4, \quad \text { phase shift }=1
$$

Then plot one cycle of the graph on the grid below. (Each square in the grid has a side of length 1.)

Solution: Since the amplitude is 2 , we take $A=2$. Since the period is 4 we have:

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{\omega} \\
4 & =\frac{2 \pi}{\omega} \\
\omega & =\frac{\pi}{2}
\end{aligned}
$$

Since the phase shift is 1 we have:

$$
\begin{aligned}
\text { phase shift } & =\frac{\phi}{\omega} \\
1 & =\frac{\phi}{\frac{\pi}{2}} \\
\phi & =\frac{\pi}{2}
\end{aligned}
$$

The function is then $y=2 \sin \left(\frac{\pi}{2} x-\frac{\pi}{2}\right)$.

