Math 121 - Exam 2 Solutions

1. (10 pts) Determine whether the given statement is TRUE or FALSE. Briefly explain your reason for each answer.
(a) $\frac{1}{a+b i}=a-b i$

Solution: FALSE. $\frac{1}{a+b i}=\frac{1}{a+b i} \cdot \frac{a-b i}{a-b i}=\frac{a-b i}{a^{2}+b^{2}} \neq a-b i$
(b) $\log (a \cdot b)=\log a \log b$

Solution: FALSE. $\log (a \cdot b)=\log a+\log b \neq \log a \log b$
(c) $a^{1 / 2}+b^{1 / 2}=(a+b)^{1 / 2}$

Solution: FALSE. Counter-example: Let $a=4$ and $b=1$. Then $a^{1 / 2}+b^{1 / 2}=4^{1 / 2}+1^{1 / 2}=3$ but $(a+b)^{1 / 2}=(4+1)^{1 / 2}=\sqrt{5}$.
(d) $a-\ln e^{a}=0$

Solution: TRUE. $a-\ln e^{a}=a-a \ln e=a-a=0$
(e) $3^{a} \cdot 3^{b}=3^{a+b}$

Solution: TRUE. The exponentials on the left have the same base so when you multiply them, you can add the exponents.
2. (15 pts) For the rational function $f(x)=\frac{x-2}{3 x-2}$,
(a) Find the the x-intercept(s).

Solution: $x=2$ since it is a root of the numerator (but not the denominator)
(b) Find the y-intercept (where the graph of $f(x)$ crosses the y-axis).

Solution: $y=1$ since $f(0)=\frac{0-2}{3(0)-2}=1$
(c) Find the vertical asymptote.

Solution: $x=\frac{2}{3}$ since it is a root of the denominator (but not the numerator)
(d) Find the horizontal asymptote.

Solution: The degrees of the numerator and denominator are equal so the horizontal asymptote is $y=\frac{1}{3}$, the ratio of the coefficients of x in the numerator and denominator.
(e) Sketch the graph of $f(x)$, clearly indicating the above information on the graph.
3. (15 pts) Find a polynomial $f(x)$ of degree 4 whose roots are $0,1, i$, and $-i$ and satisfies $f(2)=20$.

Solution: From the roots, we construct the general form of the polynomial:
$f(x)=a x(x-1)(x-i)(x+i)$ where a is a constant that is to be determined. Since $f(2)=20$ we have:

$$
\begin{aligned}
f(2)=a(2)(2-1)(2-i)(2+i) & =20 \\
a(2)(1)\left(4-i^{2}\right) & =20 \\
a(2)(1)(4-(-1)) & =20 \\
a(2)(1)(5) & =20 \\
10 & =20 \\
a & =2
\end{aligned}
$$

So, $f(x)=2 x(x-1)(x-i)(x+i)$.
4. (15 pts) Solve: $x-1<2 x+3<4-x$.

Solution: We must break up the inequality into 2 inequalities:
(1) $x-1<2 x+3$ AND (2) $2 x+3<4-x$.

Solving (1):

$$
\begin{aligned}
x-1 & <2 x+3 \\
-x & <4 \\
x & >-4
\end{aligned}
$$

Solving (2):

$$
\begin{aligned}
2 x+3 & <4-x \\
3 x & <1 \\
x & <\frac{1}{3}
\end{aligned}
$$

So, the solution is $-4<x<\frac{1}{3}$.
5. (15 pts) Find all roots, real and complex, of $x^{3}-x^{2}+2=0$.

Solution: Let $f(x)=x^{3}-x^{2}+2$. We first look for the rational roots of $f(x)$. We have $a_{0}= \pm 1, \pm 2$ and $a_{3}= \pm 1$. So the possible rational roots are ± 1 and ± 2. Of these possibilities, only -1 works. That is, $f(-1)=0$. So we know that $x+1$ is a factor of $f(x)$. To get the other roots, we must divide $f(x)$ by $x+1$:

$$
x+1) \begin{array}{r}
\frac{x^{2}-2 x+2}{x^{3}-x^{2}+2} \\
-x^{3}-x^{2} \\
\frac{-2 x^{2}}{} \\
\frac{2 x^{2}+2 x}{2 x}+2 \\
\frac{-2 x-2}{0}
\end{array}
$$

Now we use the quadratic formula to find the roots of the quotient $q(x)=x^{2}-2 x+2$:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4-8}}{2} \\
& =\frac{2 \pm \sqrt{-4}}{2} \\
& =\frac{2 \pm 2 i}{2} \\
x & =1 \pm i
\end{aligned}
$$

Thus, the roots are $-1,1+i, 1-i$.
6. (15 pts) Suppose you put $\$ 1000$ into a savings account with an interest rate of 3%, compounded monthly. How long will it take for the account balance to reach $\$ 1500$?

Solution: We start with the following formula for determining how much money is in an account $A(t)$ after t years with a starting balance of P and interest r compounded n times per year:

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here, we have $A(t)=1500, P=1000, r=0.03$, and $n=12$ (compounded monthly).

Plugging these into the above equation and solving for t we have:

$$
\begin{aligned}
1500 & =1000\left(1+\frac{0.03}{12}\right)^{12 t} \\
\frac{1500}{1000} & =(1+0.0025)^{12 t} \\
1.5 & =(1.0025)^{12 t} \\
\ln 1.5 & =\ln (1.0025)^{12 t} \\
\ln 1.5 & =(12 t) \ln 1.0025 \\
t & =\frac{\ln 1.5}{12 \ln 1.0025} \\
t & =13.53 \text { years }
\end{aligned}
$$

7. $(15 \mathrm{pts})$ Find all solutions to the equation: $2^{x-2}=3^{2 x+1}$.

Solution: To solve the equation we take the natural logarithm of both sides and then solve for x :

$$
\begin{aligned}
2^{x-2} & =3^{2 x+1} \\
\ln 2^{x-2} & =\ln 3^{2 x+1} \\
(x-2) \ln 2 & =(2 x+1) \ln 3 \\
(\ln 2) x-2 \ln 2 & =(2 \ln 3) x+\ln 3 \\
(\ln 2) x-(2 \ln 3) x & =2 \ln 2+\ln 3 \\
x(\ln 2-2 \ln 3) & =2 \ln 2+\ln 3 \\
x & =\frac{2 \ln 2+\ln 3}{\ln 2-2 \ln 3}=-1.65
\end{aligned}
$$

