## Math 121 - Quiz 3 Solution

1. Consider the rational function:

$$
R(x)=\frac{x^{2}+5 x+6}{x+3}
$$

(a) What is the domain of $R(x)$ ?
(b) Find all $x$-intercepts.
(c) Find all vertical asymptotes, if any.
(d) Find the horizontal or oblique asymptote, if there is one.
2. Solve the inequality $x^{3}+8 x^{2}<0$.

## Solution:

1. (a) the domain is all $x$ except $x=-3$
(b) the $x$-intercept is at $x=-2$
(c) there are no vertical asymptotes (there is a hole at $x=-3$ )
(d) simplifying $R(x)$ we have:

$$
R(x)=\frac{(x+2)(x+3)}{x+3}=x+2
$$

so $y=x+2$ is an oblique asymptote
2. Solving the inequality, we have:

$$
\begin{array}{r}
f(x)=x^{3}+8 x^{2}<0 \\
f(x)=x^{2}(x+8)<0
\end{array}
$$

Using the fact that the zeros of $f(x)$ are $x=0,-8$, we set up the following table:

| Interval | $(-\infty,-8)$ | $(-8,0)$ | $(0, \infty)$ |
| :--- | :---: | :---: | :---: |
| Number Chosen | -9 | -1 | 1 |
| Value of $f$ | $f(-9)=-81$ | $f(-1)=7$ | $f(1)=9$ |
| Location of graph | below $x$-axis | above $x$-axis | above $x$-axis |

Since $f(x)<0$, the solution is $x<-8$.

