Math 121 - Quiz 3 Solution

1. Consider the rational function:

$$
R(x)=\frac{3 x}{x^{2}-1}
$$

(a) What is the domain of $R(x)$?
(b) Find all x-intercepts.
(c) Find all vertical asymptotes, if any.
(d) Find the horizontal or oblique asymptote, if there is one.
2. Solve the inequality $\frac{x+4}{x-2} \leq 1$.

Solution:

1. (a) the domain is all x except $x= \pm 1$
(b) the x-intercept is at $x=0$
(c) the vertical asymptotes are $x= \pm 1$
(d) the horizontal asymptote is $y=0$ (the degree of the numerator is less than the degree of the denominator)
2. Solving the inequality, we have:

$$
\begin{aligned}
\frac{x+4}{x-2} & \leq 1 \\
\frac{x+4}{x-2}-1 & \leq 0 \\
\frac{x+4-(x-2)}{x-2} & \leq 0 \\
\frac{6}{x-2} & \leq 0
\end{aligned}
$$

Using the fact that the zero of the denominator of $f(x)=\frac{6}{x-2}$ is $x=2$, we set up the following table:

Interval	$(-\infty, 2)$	$(2, \infty)$
Number Chosen	0	3
Value of f	$f(0)=-3$	$f(3)=6$
Location of graph	below x-axis	above x-axis

Since $f(x) \leq 0$, the solution is $x<2$.

