Math 121 – Quiz 3 Solution

1. Consider the rational function:

$$R(x) = \frac{3x}{x^2 - 1}$$

- (a) What is the domain of R(x)?
- (b) Find all *x*-intercepts.
- (c) Find all vertical asymptotes, if any.
- (d) Find the horizontal or oblique asymptote, if there is one.

2. Solve the inequality
$$\frac{x+4}{x-2} \le 1$$
.

Solution:

- 1. (a) the domain is all x except $x = \pm 1$
 - (b) the x-intercept is at x = 0
 - (c) the vertical asymptotes are $x = \pm 1$
 - (d) the horizontal asymptote is y = 0 (the degree of the numerator is less than the degree of the denominator)
- 2. Solving the inequality, we have:

$$\frac{x+4}{x-2} \le 1$$
$$\frac{x+4}{x-2} - 1 \le 0$$
$$\frac{x+4 - (x-2)}{x-2} \le 0$$
$$\frac{6}{x-2} \le 0$$

Using the fact that the zero of the denominator of $f(x) = \frac{6}{x-2}$ is x = 2, we set up the following table:

Interval	$(-\infty,2)$	$(2,\infty)$
Number Chosen	0	3
Value of f	f(0) = -3	f(3) = 6
Location of graph	below x -axis	above x -axis

Since $f(x) \leq 0$, the solution is x < 2.