Math 121 – Quiz 3 Solution

- 1. Construct a rational function R(x) that has the following properties:
 - x = 1 and x = -2 are vertical asymptotes
 - y = 3 is a horizontal asymptote
 - the x-intercept is at x = 0
- 2. Solve the inequality $\frac{x-3}{x+1} > 0$.

Solution:

1. Since x = 1 and x = -2 are vertical asymptotes, we know that:

$$R(x) = \frac{p(x)}{(x-1)(x+2)}$$

Since y = 3 is a horizontal asymptote, the degree of p(x) is 2 and the coefficient of x^2 is 3. Also, since the *x*-intercept is at x = 0 we know that p(0) = 0. Therefore, we can say that $p(x) = 3x^2$. So, the function R(x) is:

$$R(x) = \frac{3x^2}{(x-1)(x+2)}$$

2. Using the fact that the zeros of the numerator and denominator of $f(x) = \frac{x-3}{x+1}$ are x = 3, -1, we set up the following table:

Interval	$(-\infty, -1)$	(-1,3)	$(3,\infty)$
Number Chosen	-2	0	4
Value of f	f(-2) = 5	f(0) = -3	$f(4) = \frac{1}{5}$
Location of graph	above x -axis	below <i>x</i> -axis	above x -axis

Since f(x) > 0, the solution is x < -1 or x > 3.