Math 121 - Quiz 3 Solution

1. Construct a rational function $R(x)$ that has the following properties:

- $x=1$ and $x=-2$ are vertical asymptotes
- $y=3$ is a horizontal asymptote
- the x-intercept is at $x=0$

2. Solve the inequality $\frac{x-3}{x+1}>0$.

Solution:

1. Since $x=1$ and $x=-2$ are vertical asymptotes, we know that:

$$
R(x)=\frac{p(x)}{(x-1)(x+2)}
$$

Since $y=3$ is a horizontal asymptote, the degree of $p(x)$ is 2 and the coefficient of x^{2} is 3 . Also, since the x-intercept is at $x=0$ we know that $p(0)=0$. Therefore, we can say that $p(x)=3 x^{2}$. So, the function $R(x)$ is:

$$
R(x)=\frac{3 x^{2}}{(x-1)(x+2)}
$$

2. Using the fact that the zeros of the numerator and denominator of $f(x)=\frac{x-3}{x+1}$ are $x=3,-1$, we set up the following table:

Interval	$(-\infty,-1)$	$(-1,3)$	$(3, \infty)$
Number Chosen	-2	0	4
Value of f	$f(-2)=5$	$f(0)=-3$	$f(4)=\frac{1}{5}$
Location of graph	above x-axis	below x-axis	above x-axis

Since $f(x)>0$, the solution is $x<-1$ or $x>3$.

