Math 121 - Quiz 3 Solution

1. Construct a rational function $R(x)$ that has the following properties:

- $x=1, x=2$, and $x=3$ are vertical asymptotes
- $y=0$ is a horizontal asymptote
- the x-intercept is at $x=-1$

2. Solve the inequality $\frac{x-4}{2 x+4} \geq 1$.

Solution:

1. Since $x=1, x=2$, and $x=3$ are vertical asymptotes, we know that:

$$
R(x)=\frac{p(x)}{(x-1)(x-2)(x-3)}
$$

Since $y=0$ is a horizontal asymptote, the degree of $p(x)$ is less than 3. Also, since the x-intercept is at $x=0$ we know that $p(-1)=0$. Therefore, we can say that $p(x)=x+1$. So, the function $R(x)$ is:

$$
R(x)=\frac{x+1}{(x-1)(x-2)(x-3)}
$$

2. Rewriting the inequality, we have:

$$
\begin{aligned}
\frac{x-4}{2 x+4} & \geq 1 \\
\frac{x-4}{2 x+4}-1 & \geq 0 \\
\frac{x-4-(2 x+4)}{2 x+4} & \geq 0 \\
\frac{-x-8}{2(x+2)} & \geq 0
\end{aligned}
$$

Using the fact that the zeros of the numerator and denominator of $f(x)=\frac{-x-8}{2(x+2)}$ are $x=-8,-2$, we set up the following table:

Interval	$(-\infty,-8)$	$(-8,-2)$	$(-2, \infty)$
Number Chosen	-9	-3	0
Value of f	$f(-9)=-\frac{1}{14}$	$f(-3)=\frac{5}{2}$	$f(0)=-2$
Location of graph	below x-axis	above x-axis	below x-axis

Since $f(x) \geq 0$, the solution is $-8 \leq x<-2$.

