Math 121 – Section 2.2 Solutions

- 9. (a) f(0) = 3, f(-6) = -3
 - (b) f(6) = 0, f(11) = 1
 - (c) f(3) is positive
 - (d) f(-4) is negative
 - (e) f(x) = 0 when x = -3, 6, 10
 - (f) f(x) > 0 when -3 < x < 6 or 10 < x < 11
 - (g) The domain of f(x) is $-6 \le x \le 11$.
 - (h) The range of f(x) is $-3 \le y \le 4$.
 - (i) The x-intercepts are (-3, 0), (6, 0), (10, 0).
 - (j) The y-intercept is (0, 3).
 - (k) The line $y = \frac{1}{2}$ intersects the graph 3 times.
 - (l) The line x = 5 intersects the graph 1 time.
 - (m) f(x) = 3 when x = 0, 4
 - (n) f(x) = -2 when x = -5, 8
- 11. The given graph is not a function. It does not pass the vertical line test (there are vertical lines that intersect the graph more than once).
- 13. The given graph is a function.
 - (a) The domain is $[-\pi, \pi]$. The range is [-1, 1].
 - (b) The *x*-intercepts are $\left(-\frac{\pi}{2},0\right), \left(\frac{\pi}{2},0\right)$. The *y*-intercept is (0,1).
 - (c) The graph has symmetry with respect to the y-axis.
- 16. The given graph is not a function.
- 24. $f(x) = -3x^2 + 5x$
 - (a) The point (-1, 2) is not on the graph since $f(-1) = -3(-1)^2 + 5(-1) = -8 \neq 2$.
 - (b) $f(-2) = -3(-2)^2 + 5(-2) = -22$. Therefore, the point (-2, -22) is on the graph.
 - (c) If f(x) = -2 then,

$$-2 = -3x^{2} + 5x$$
$$3x^{2} - 5x - 2 = 0$$
$$(3x + 1)(x - 2) = 0$$
$$x = -\frac{1}{3}, \ x = 2$$

Therefore, the points $\left(-\frac{1}{3}, -2\right)$ and (2, -2) are on the graph.

(d) The domain of f(x) is all real numbers.

(e) Note that:

$$-3x^{2} + 5x = 0$$
$$x(-3x + 5) = 0$$
$$x = 0, \ x = \frac{5}{3}$$

Therefore, the x-intercepts are (0,0) and $\left(\frac{5}{3},0\right)$. (f) Since $f(0) = -3(0)^2 + 5(0) = 0$, the y-intercept is (0,0).