Math 121 - Section 2.2 Solutions

9. (a) $f(0)=3, f(-6)=-3$
(b) $f(6)=0, f(11)=1$
(c) $f(3)$ is positive
(d) $f(-4)$ is negative
(e) $f(x)=0$ when $x=-3,6,10$
(f) $f(x)>0$ when $-3<x<6$ or $10<x<11$
(g) The domain of $f(x)$ is $-6 \leq x \leq 11$.
(h) The range of $f(x)$ is $-3 \leq y \leq 4$.
(i) The x-intercepts are $(-3,0),(6,0),(10,0)$.
(j) The y-intercept is $(0,3)$.
(k) The line $y=\frac{1}{2}$ intersects the graph 3 times.
(l) The line $x=5$ intersects the graph 1 time.
(m) $f(x)=3$ when $x=0,4$
(n) $f(x)=-2$ when $x=-5,8$
10. The given graph is not a function. It does not pass the vertical line test (there are vertical lines that intersect the graph more than once).
11. The given graph is a function.
(a) The domain is $[-\pi, \pi]$. The range is $[-1,1]$.
(b) The x-intercepts are $\left(-\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, 0\right)$. The y-intercept is $(0,1)$.
(c) The graph has symmetry with respect to the y-axis.
12. The given graph is not a function.
13. $f(x)=-3 x^{2}+5 x$
(a) The point $(-1,2)$ is not on the graph since $f(-1)=-3(-1)^{2}+5(-1)=-8 \neq 2$.
(b) $f(-2)=-3(-2)^{2}+5(-2)=-22$. Therefore, the point $(-2,-22)$ is on the graph.
(c) If $f(x)=-2$ then,

$$
\begin{aligned}
-2 & =-3 x^{2}+5 x \\
3 x^{2}-5 x-2 & =0 \\
(3 x+1)(x-2) & =0 \\
x=-\frac{1}{3}, x & =2
\end{aligned}
$$

Therefore, the points $\left(-\frac{1}{3},-2\right)$ and $(2,-2)$ are on the graph.
(d) The domain of $f(x)$ is all real numbers.
(e) Note that:

$$
\begin{aligned}
-3 x^{2}+5 x & =0 \\
x(-3 x+5) & =0 \\
x=0, x & =\frac{5}{3}
\end{aligned}
$$

Therefore, the x-intercepts are $(0,0)$ and $\left(\frac{5}{3}, 0\right)$.
(f) Since $f(0)=-3(0)^{2}+5(0)=0$, the y-intercept is $(0,0)$.

