Math 121 - Section 2.3 Solutions

11. f is increasing on the interval $(-8,-2)$
12. f is not increasing on the interval $(2,10)$ (it is decreasing on the interval $(2,5)$)
13. f is increasing on the intervals: $(-8,-2),(0,2),(5, \infty)$
14. There is a local maximum at $x=2$ and the function value there is $f(-2)=10$.
15. f has local maxima at the points $(-2,6)$ and $(2,10)$.
16. The function $f(x)=2 x^{4}-x^{2}$ is even because:

$$
f(-x)=2(-x)^{4}-(-x)^{2}=2 x^{4}-x^{2}=f(x)
$$

36. The function $h(x)=3 x^{3}+5$ is neither odd nor even because:

$$
h(-x)=3(-x)^{3}+5=-3 x^{3}+5 \neq h(x),-h(x)
$$

38. The function $G(x)=\sqrt{x}$ is neither odd nor even since $G(-x)$ is not defined (the domain of $G(x)$ is $x \geq 0$).
39. The function $h(x)=\frac{x}{x^{2}-1}$ is odd because:

$$
h(-x)=\frac{-x}{(-x)^{2}-1}=-\frac{x}{x^{2}-1}=-h(x)
$$

45. The function $f(x)=x^{3}-3 x+2$ has a local maximum at $(-1,4)$ and a local minimum at $(1,0)$. The function is increasing on the intervals $(-2,-1)$ and $(1,2)$. It is decreasing on the interval $(-1,1)$.
46. The average rate of change of $f(x)=-2 x^{2}+4$ is:
(a) From 0 to 2: $\frac{\Delta y}{\Delta x}=\frac{f(2)-f(0)}{2-0}=\frac{-4-4}{2}=-4$
(b) From 1 to 3: $\frac{\Delta y}{\Delta x}=\frac{f(3)-f(1)}{3-1}=\frac{-14-2}{2}=-8$
(c) From 1 to 4: $\frac{\Delta y}{\Delta x}=\frac{f(4)-f(1)}{4-1}=\frac{-28-2}{3}=-10$
