Math 121 - Section 3.1 Solutions

14. $g(x)=5 x-4$
(a) the slope is 5 and the y-intercept is -4
(c) the average rate of change is 5 , i.e. the slope
(d) the function is increasing because the slope is positive
15. The function is linear because when $\Delta x=1$ we have $\Delta y=4$. The slope is then:

$$
\text { slope }=\frac{\Delta y}{\Delta x}=4
$$

29. $f(x)=4 x-1, g(x)=-2 x+5$
(a) The solution to $f(x)=0$ is $x=\frac{1}{4}$.
(b) The solution to $f(x)>0$ is $x>\frac{1}{4}$.
(c) The solution to $f(x)=g(x)$ is:

$$
\begin{aligned}
f(x) & =g(x) \\
4 x-1 & =-2 x+5 \\
6 x & =6 \\
x & =1
\end{aligned}
$$

(d) The solution to $f(x) \leq g(x)$ is:

$$
\begin{aligned}
f(x) & \leq g(x) \\
4 x-1 & \leq-2 x+5 \\
6 x & \leq 6 \\
x & \leq 1
\end{aligned}
$$

32. Using the figure given in the book:
(a) The solution to $g(x)=20$ is $x=5$.
(b) The solution to $g(x)=60$ is $x=-15$.
(c) The solution to $g(x)=0$ is $x=15$.
(d) The solution to $g(x)>20$ is $x<5$.
(e) The solution to $g(x) \leq 60$ is $x \geq-15$.
(f) The solution to $0<g(x)<60$ is $-15<x<15$.
33. Using the function $C(x)=0.38 x+5$, where C is the monthly cost, in dollars, for international calls on a phone and x is the number of minutes used:
(a) $C(50)=0.38(50)+5=24$ dollars
(b) If $C(x)=29.32$ then:

$$
\begin{aligned}
0.38 x+5 & =29.32 \\
0.38 x & =24.32 \\
x & =\frac{24.32}{0.38} \\
x & =64 \text { minutes }
\end{aligned}
$$

(c) If you budget $\$ 60$ per month, then the maximum number of minutes you can talk is:

$$
\begin{aligned}
0.38 x+5 & =60 \\
0.38 x & =55 \\
x & =\frac{55}{0.38} \\
x & \approx 177.74 \text { minutes }
\end{aligned}
$$

Therefore, the maximum number of minutes you can talk is 177 minutes.

