Math 121 - Section 3.3 Solutions

11-18. (in order) C, E, F, A, G, B, H, D
20. $f(x)=2 x^{2}$ is the function x^{2} vertically stretched by a factor of 2
36. Completing the square on $f(x)=x^{2}-4 x$, we have:

$$
\begin{aligned}
f(x) & =x^{2}-4 x \\
& =\left(x^{2}-4 x+4\right)-4 \\
& =(x-2)^{2}-4
\end{aligned}
$$

(a) the graph opens up; the vertex is $(2,-4)$; the axis of symmetry is $x=2$; the y-intercept is $y=0$; the x-intercepts are $x=0$ and $x=4$
(b) the domain is all real numbers; the range is $[-4, \infty)$
(c) the function is decreasing on the interval $(-\infty, 2)$; the function is increasing on the interval $(2, \infty)$
41. Completing the square on $f(x)=x^{2}+2 x-8$, we have:

$$
\begin{aligned}
f(x) & =x^{2}+2 x-8 \\
& =\left(x^{2}+2 x+1\right)-8+1 \\
& =(x+1)^{2}-7
\end{aligned}
$$

(a) the graph opens up; the vertex is $(-1,-7)$; the axis of symmetry is $x=-1$; the y-intercept is $y=-8$; the x-intercepts are $x=-1 \pm \sqrt{7}$
(b) the domain is all real numbers; the range is $[-7, \infty)$
(c) the function is decreasing on the interval $(-\infty,-1)$; the function is increasing on the interval $(-1, \infty)$
44. Completing the square on $f(x)=x^{2}+6 x+9$, we have:

$$
\begin{aligned}
f(x) & =x^{2}+6 x+9 \\
& =(x+3)^{2}
\end{aligned}
$$

(a) the graph opens up; the vertex is $(-3,0)$; the axis of symmetry is $x=-3$; the y-intercept is $y=9$; the x-intercept is $x=-3$
(b) the domain is all real numbers; the range is $[0, \infty)$
(c) the function is decreasing on the interval $(-\infty,-3)$; the function is increasing on the interval $(-3, \infty)$
53. The vertex is at $(-1,-2)$. Therefore, we know that:

$$
f(x)=a(x+1)^{2}-2
$$

The point $(0,-1)$ is on the graph. Therefore,

$$
\begin{aligned}
f(0)=a(0+1)^{2}-2 & =-1 \\
a-2 & =-1 \\
a & =1
\end{aligned}
$$

The quadratic function is $f(x)=(x+1)^{2}-2$.
54. The vertex is at $(2,1)$. Therefore, we know that:

$$
f(x)=a(x-2)^{2}+1
$$

The point $(0,5)$ is on the graph. Therefore,

$$
\begin{aligned}
f(0)=a(0-2)^{2}+1 & =5 \\
4 a+1 & =5 \\
4 a & =4 \\
a & =1
\end{aligned}
$$

The quadratic function is $f(x)=(x-2)^{2}+1$.
75. (a) If the x-intercepts are $-3,1$ then:

$$
\begin{aligned}
a=1: & f(x)=1(x+3)(x-1) \\
a=2: & f(x)=2(x+3)(x-1) \\
a=-2: & f(x)=-2(x+3)(x-1) \\
a=5: & f(x)=5(x+3)(x-1)
\end{aligned}
$$

(b) The value of a does not affect the x-intercepts.
(c) The value of a does not affect the axis of symmetry. Multiplying by a stretches the graph vertically so the axis of symmetry will remain the same.
(d) The x-coordinate of the vertex is not affected by a; it is always $x=-1$. The y-coordinate of the vertex is $y=-4 a$.
(e) The x-coordinate of the vertex $(x=-1)$ is equal to the midpoint of the x-intercepts (the intercepts are at $x=1$ and $x=-3$ so the midpoint is $x=-1$).

