Math 121 – Section 3.5 Solutions

- 4. Using the given figure:
 - (a) The solution to g(x) < 0 is x < -1 or x > 4. (b) The solution to $g(x) \ge 0$ is $-1 \le x \le 4$.
- 5. Using the given figure:
 - (a) The solution to $g(x) \ge f(x)$ is $-2 \le x \le 1$. (b) The solution to f(x) > g(x) is x < -2 or x > 1.
- 7. To solve $f(x) = x^2 3x 10 < 0$, we find the *x*-intercepts of f(x):

$$x^{2} - 3x - 10 = 0$$

(x - 5)(x + 2) = 0
x = 5, x = -2

Since f(x) opens up and f(x) < 0, the solution is -2 < x < 5

12. To solve $f(x) = x^2 - 1 < 0$, we find the *x*-intercepts of f(x):

$$x^2 - 1 = 0$$

$$x^2 = 1$$

$$x = \pm 1$$
Since $f(x)$ opens up and $f(x) < 0$, the solution is $\boxed{-1 < x < 1}$

17. To solve x(x-7) > 8, we first rewrite the inequality:

$$\begin{aligned} x(x-7) &> 8\\ x^2 - 7x &> 8\\ x^2 - 7x - 8 &> 0 \end{aligned}$$

The *x*-intercepts of $f(x) = x^2 - 7x - 8$ are:

$$x^{2} - 7x - 8 = 0$$

(x - 8)(x + 1) = 0
x = 8, x = -1

Since f(x) opens up and f(x) > 0, the solution is x < -1 or x > 8.

22. To solve $2(2x^2 - 3x) > -9$, we first rewrite the inequality:

$$2(2x^{2} - 3x) > -9$$
$$4x^{2} - 6x > -9$$
$$4x^{2} - 6x + 9 > 0$$

The function $f(x) = 4x^2 - 6x + 9$ has no *x*-intercepts. Since f(x) opens up and f(x) > 0, the solution is all real numbers.

25.
$$f(x) = x^2 - 1, g(x) = 3x + 3$$

(a) $f(x) = 0$: $\boxed{x = \pm 1}$
(b) $g(x) = 0$: $\boxed{x = -1}$
(c) $f(x) = g(x)$:

$$\begin{aligned}
& f(x) = g(x) \\
& x^2 - 1 = 3x + 3 \\
& x^2 - 3x - 4 = 0 \\
& (x - 4)(x + 1) = 0 \\
& x = 4, x = -1
\end{aligned}$$
The solutions are $\boxed{x = 4, x = -2}$
(d) $f(x) > 0$: $\boxed{x < -1 \text{ or } x > 1}$
(e) $g(x) \le 0$: $\boxed{x < -1 \text{ or } x > 1}$
(f) $f(x) > g(x)$: $\boxed{x < -1 \text{ or } x > 4}$
(g) $f(x) \ge 1$:

$$\begin{aligned}
& f(x) \ge 1 \\
& x^2 - 1 \ge 1 \\
& x^2 - 2 \ge 0 \\
& (x - \sqrt{2})(x + \sqrt{2}) \ge 0
\end{aligned}$$
The solution is $\boxed{x \le -\sqrt{2} \text{ or } x \ge \sqrt{2}}$.
30. $f(x) = x^2 - 2x + 1, g(x) = -x^2 + 1$
(a) $f(x) = 0$: $\boxed{x = 1}$
(b) $g(x) = 0$: $\boxed{x = 1}$
(c) $f(x) = g(x)$:

$$\begin{aligned}
& f(x) = g(x) \\
& x^2 - 2x = 0 \\
& x^2 - x = 0 \\
& x(x - 1) = 0 \\
& x = 0, x = 1
\end{aligned}$$

The solutions are
$$x = 0, x = 1$$
.
(d) $f(x) > 0$: all x except $x = 1$
(e) $g(x) \le 0$: $-1 \le x \le 1$
(f) $f(x) > g(x)$: $x < 0$ or $x > 1$
(g) $f(x) \ge 1$:

$$f(x) \ge 1$$
$$x^2 - 2x + 1 \ge 1$$
$$x^2 - 2x \ge 0$$
$$x(x - 2) \ge 0$$

The solution is $x \le 0$ or $x \ge 2$.

33. $s(t) = 80t - 16t^2$

(a) When the ball strikes the ground, s(t) = 0:

$$80t - 16t^{2} = 0$$

$$5t - t^{2} = 0$$

$$t(5 - t) = 0$$

$$t = 0, \ t = 5$$

The ball strikes the ground after 5 seconds.

(b) When the ball is more than 96 feet above the ground, s(t) > 96:

$$80t - 16t^{2} > 96$$

-16t² + 80t - 96 > 0
$$t^{2} - 5t + 6 < 0$$

$$(t - 2)(t - 3) < 0$$

Therefore, the ball is more than 96 feet above the ground when 2 < t < 3.