Math 121 - Section 3.5 Solutions

4. Using the given figure:
(a) The solution to $g(x)<0$ is $x<-1$ or $x>4$.
(b) The solution to $g(x) \geq 0$ is $-1 \leq x \leq 4$.
5. Using the given figure:
(a) The solution to $g(x) \geq f(x)$ is $-2 \leq x \leq 1$.
(b) The solution to $f(x)>g(x)$ is $x<-2$ or $x>1$.
6. To solve $f(x)=x^{2}-3 x-10<0$, we find the x-intercepts of $f(x)$:

$$
\begin{aligned}
x^{2}-3 x-10 & =0 \\
(x-5)(x+2) & =0 \\
x=5, x & =-2
\end{aligned}
$$

Since $f(x)$ opens up and $f(x)<0$, the solution is $-2<x<5$.
12. To solve $f(x)=x^{2}-1<0$, we find the x-intercepts of $f(x)$:

$$
\begin{aligned}
x^{2}-1 & =0 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

Since $f(x)$ opens up and $f(x)<0$, the solution is $-1<x<1$.
17. To solve $x(x-7)>8$, we first rewrite the inequality:

$$
\begin{aligned}
x(x-7) & >8 \\
x^{2}-7 x & >8 \\
x^{2}-7 x-8 & >0
\end{aligned}
$$

The x-intercepts of $f(x)=x^{2}-7 x-8$ are:

$$
\begin{aligned}
x^{2}-7 x-8 & =0 \\
(x-8)(x+1) & =0 \\
x=8, x & =-1
\end{aligned}
$$

Since $f(x)$ opens up and $f(x)>0$, the solution is $x<-1$ or $x>8$
22. To solve $2\left(2 x^{2}-3 x\right)>-9$, we first rewrite the inequality:

$$
\begin{aligned}
2\left(2 x^{2}-3 x\right) & >-9 \\
4 x^{2}-6 x & >-9 \\
4 x^{2}-6 x+9 & >0
\end{aligned}
$$

The function $f(x)=4 x^{2}-6 x+9$ has no x-intercepts. Since $f(x)$ opens up and $f(x)>0$, the solution is all real numbers.
25. $f(x)=x^{2}-1, g(x)=3 x+3$
(a) $f(x)=0: \quad x= \pm 1$
(b) $g(x)=0: x=-1$
(c) $f(x)=g(x)$:

$$
\begin{aligned}
f(x) & =g(x) \\
x^{2}-1 & =3 x+3 \\
x^{2}-3 x-4 & =0 \\
(x-4)(x+1) & =0 \\
x=4, x & =-1
\end{aligned}
$$

The solutions are $x=4, x=-2$.
(d) $f(x)>0$: $x<-1$ or $x>1$
(e) $g(x) \leq 0: x \leq-1$
(f) $f(x)>g(x): x<-1$ or $x>4$
(g) $f(x) \geq 1$:

$$
\begin{aligned}
f(x) & \geq 1 \\
x^{2}-1 & \geq 1 \\
x^{2}-2 & \geq 0 \\
(x-\sqrt{2})(x+\sqrt{2}) & \geq 0
\end{aligned}
$$

The solution is $x \leq-\sqrt{2}$ or $x \geq \sqrt{2}$
30. $f(x)=x^{2}-2 x+1, g(x)=-x^{2}+1$
(a) $f(x)=0: x=1$
(b) $g(x)=0: x= \pm 1$
(c) $f(x)=g(x)$:

$$
\begin{aligned}
f(x) & =g(x) \\
x^{2}-2 x+1 & =-x^{2}+1 \\
2 x^{2}-2 x & =0 \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x=0, x & =1
\end{aligned}
$$

The solutions are $x=0, x=1$
(d) $f(x)>0$: all x except $x=1$
(e) $g(x) \leq 0:-1 \leq x \leq 1$
(f) $f(x)>g(x): \quad x<0$ or $x>1$
(g) $f(x) \geq 1$:

$$
\begin{aligned}
f(x) & \geq 1 \\
x^{2}-2 x+1 & \geq 1 \\
x^{2}-2 x & \geq 0 \\
x(x-2) & \geq 0
\end{aligned}
$$

The solution is $x \leq 0$ or $x \geq 2$
33. $s(t)=80 t-16 t^{2}$
(a) When the ball strikes the ground, $s(t)=0$:

$$
\begin{aligned}
80 t-16 t^{2} & =0 \\
5 t-t^{2} & =0 \\
t(5-t) & =0 \\
t=0, t & =5
\end{aligned}
$$

The ball strikes the ground after 5 seconds.
(b) When the ball is more than 96 feet above the ground, $s(t)>96$:

$$
\begin{aligned}
80 t-16 t^{2} & >96 \\
-16 t^{2}+80 t-96 & >0 \\
t^{2}-5 t+6 & <0 \\
(t-2)(t-3) & <0
\end{aligned}
$$

Therefore, the ball is more than 96 feet above the ground when $2<t<3$.

