Math 121 - Section 4.1 Solutions

11. $f(x)=4 x+x^{3}$ is a polynomial function of degree 3
12. $g(x)=\frac{1-x^{2}}{2}$ is a polynomial function of degree 2
13. $g(x)=x^{3 / 2}-x^{2}+2$ is not a polynomial function since the first term has an exponent that is not a nonnegative integer
14. The graph of $f(x)=(x-2)^{5}$ is the graph of $y=x^{5}$ shifted 2 units to the right.
15. The graph of $f(x)=-x^{4}$ is the graph of $y=x^{4}$ reflected across the x-axis.
16. If $f(x)$ has degree 3 and its zeros are $-2,2$, and 3 then one possible function $f(x)$ is:

$$
f(x)=(x+2)(x-2)(x-3)
$$

40. If $f(x)$ has degree 3 and its zeros are $-4,0$, and 2 then one possible function $f(x)$ is:

$$
f(x)=(x+4)(x-0)(x-2)
$$

43. If $f(x)$ has degree 3 and its zeros are -1 (multiplicity 1) and 3 (multiplicity 2), then one possible function $f(x)$ is:

$$
f(x)=(x+1)(x-3)^{2}
$$

53. $f(x)=3\left(x^{2}+8\right)\left(x^{2}+9\right)^{2}$
(a) $f(x)$ has no real zeros
(b) there are no x-intercepts
(c) there are no x-intercepts
(d) $f(x)$ has degree $6 \Rightarrow$ there are a maximum of 5 turning points
(e) for large $|x|$, the function resembles $f(x)=3 x^{6}$
54. the possible functions are (c), (e), and (f)
55. the possible functions are (c), (e), and (f)
56. $f(x)=x^{3}+0.2 x^{2}-1.5876 x-0.31752$
(a) the degree is 3 ; the function resembles $f(x)=x^{3}$ for large $|x|$

(b)
(c) x intercepts: $x=-1.26,-0.2,1.26 ; y$-intercepts: $y=-0.32$
(d) the graph is below the x-axis on the intervals: $(-\infty,-1.26)$ and $(-0.2,1.26)$; the graph is above the y-axis on the intervals: $(-1.26,-0.2)$ and $(1.26, \infty)$
(e) local maximum: $(-0.80,0.57)$; local minimum: $(0.66,-0.99)$
(f) see part (b)
(g) the domain and range are all real numbers
(h) f is increasing on the intervals: $(-\infty,-0.80),(0.66, \infty) ; f$ is decreasing on the interval: $(-0.80,0.66)$
