Math 121 - Section 4.3 Solutions

7. $R(x)=\frac{x+1}{x(x+4)}$

- the domain is all x except $x=0,-4$; there is no y-intercept
- the x-intercept is at $x=-1$
- the vertical asymptotes are $x=0$ and $x=-4$
- the horizontal asymptote is $y=0$
- table:

Interval	$(-\infty,-4)$	$(-4,-1)$	$(-1,0)$	$(0, \infty)$
Number Chosen	-5	-2	$-\frac{1}{2}$	1
Value of R	$R(-5)=-\frac{4}{5}$	$R(-2)=\frac{1}{4}$	$R\left(-\frac{1}{2}\right)=-\frac{2}{7}$	$R(1)=\frac{2}{5}$
Location of graph	below x-axis	above x-axis	below x-axis	above x-axis
Point on graph	$\left(-5,-\frac{4}{5}\right)$	$\left(-2, \frac{1}{4}\right)$	$\left(-\frac{1}{2},-\frac{2}{7}\right)$	$\left(1, \frac{2}{5}\right)$

9. $R(x)=\frac{3 x+3}{2 x+4}=\frac{3(x+1)}{2(x+2)}$

- the domain is all x except $x=-2$; the y-intercept is at $R(0)=\frac{3}{4}$
- the x-intercept is at $x=-1$
- the vertical asymptote is $x=-2$
- the horizontal asymptote is $y=\frac{3}{2}$
- table:

Interval	$(-\infty,-2)$	$(-2,-1)$	$(-1, \infty)$
Number Chosen	-3	$-\frac{3}{2}$	0
Value of R	$R(-3)=3$	$R\left(-\frac{3}{2}\right)=-\frac{3}{2}$	$R(0)=\frac{3}{4}$
Location of graph	above x-axis	below x-axis	above x-axis
Point on graph	$(-3,3)$	$\left(-\frac{3}{2},-\frac{3}{2}\right)$	$\left(0, \frac{3}{4}\right)$

12. $R(x)=\frac{6}{x^{2}-x-6}=\frac{6}{(x-3)(x+2)}$

- the domain is all x except $x=-2,3$; the y-intercept is at $R(0)=-1$
- there is no x-intercept
- the vertical asymptotes are $x=-2$ and $x=3$
- the horizontal asymptote is $y=0$
- table:

Interval	$(-\infty,-2)$	$(-2,3)$	$(3, \infty)$
Number Chosen	-3	0	4
Value of R	$R(-3)=1$	$R(0)=-1$	$R(4)=1$
Location of graph	above x-axis	below x-axis	above x-axis
Point on graph	$(-3,1)$	$(0,-1)$	$(4,1)$

17. $R(x)=\frac{x^{2}}{x^{2}+x-6}=\frac{x^{2}}{(x+3)(x-2)}$

- the domain is all x except $x=-3,2$; the y-intercept is at $R(0)=0$
- the x-intercept is at $x=0$
- the vertical asymptotes are $x=-3$ and $x=2$
- the horizontal asymptote is $y=1$
- table:

Interval	$(-\infty,-3)$	$(-3,0)$	$(0,2)$	$(2, \infty)$
Number Chosen	-4	-1	1	3
Value of R	$R(-4)=\frac{8}{3}$	$R(-1)=-\frac{1}{6}$	$R(1)=-\frac{1}{4}$	$R(3)=\frac{3}{2}$
Location of graph	above x-axis	below x-axis	below x-axis	above x-axis
Point on graph	$\left(-4, \frac{8}{3}\right)$	$\left(-1,-\frac{1}{6}\right)$	$\left(1,-\frac{1}{4}\right)$	$\left(3, \frac{3}{2}\right)$

35. $R(x)=\frac{6 x^{2}-7 x-3}{2 x^{2}-7 x+6}=\frac{(3 x+1)(2 x-3)}{(2 x-3)(x-2)}$

- the domain is all x except $x=\frac{3}{2}, 2$; the y-intercept is at $R(0)=-\frac{1}{2}$
- the x-intercept is at $x=-\frac{1}{3}$
- the vertical asymptote is $x=2$
- the horizontal asymptote is $y=3$
- there is a hole at $x=\frac{3}{2}$
- table:

Interval	$\left(-\infty,-\frac{1}{3}\right)$	$\left(-\frac{1}{3}, 2\right)$	$(2, \infty)$
Number Chosen	-1	0	3
Value of R	$R(-1)=\frac{2}{3}$	$R(0)=-\frac{1}{2}$	$R(3)=10$
Location of graph	above x-axis	below x-axis	above x-axis
Point on graph	$\left(-1, \frac{2}{3}\right)$	$\left(0,-\frac{1}{2}\right)$	$(3,10)$

45. A rational function that might have the given graph is:

$$
R(x)=\frac{x^{2}}{(x+2)(x-2)}
$$

46. A rational function that might have the given graph is:

$$
R(x)=-\frac{x}{(x+1)(x-1)}
$$

