Math 121 – Section 4.3 Solutions

- 7. $R(x) = \frac{x+1}{x(x+4)}$
 - the domain is all x except x = 0, -4; there is no y-intercept
 - the *x*-intercept is at x = -1
 - the vertical asymptotes are x = 0 and x = -4
 - the horizontal asymptote is y = 0
 - table:

Interval	$(-\infty, -4)$	(-4, -1)	(-1, 0)	$(0,\infty)$
Number Chosen	-5	-2	$-\frac{1}{2}$	1
Value of R	$R(-5) = -\frac{4}{5}$	$R(-2) = \frac{1}{4}$	$R(-\frac{1}{2}) = -\frac{2}{7}$	$R(1) = \frac{2}{5}$
Location of graph	below x -axis	above x -axis	below x -axis	above x -axis
Point on graph	$(-5, -\frac{4}{5})$	$(-2, \frac{1}{4})$	$\left(-\frac{1}{2},-\frac{2}{7}\right)$	$(1, \frac{2}{5})$

9. $R(x) = \frac{3x+3}{2x+4} = \frac{3(x+1)}{2(x+2)}$

- the domain is all x except x = -2; the y-intercept is at $R(0) = \frac{3}{4}$
- the x-intercept is at x = -1
- the vertical asymptote is x = -2
- the horizontal asymptote is $y = \frac{3}{2}$

• table:

Interval	$(-\infty, -2)$	(-2, -1)	$(-1,\infty)$
Number Chosen	-3	$-\frac{3}{2}$	0
Value of R	R(-3) = 3	$R(-\frac{3}{2}) = -\frac{3}{2}$	$R(0) = \frac{3}{4}$
Location of graph	above x -axis	below x -axis	above x -axis
Point on graph	(-3, 3)	$\left(-\tfrac{3}{2},-\tfrac{3}{2}\right)$	$(0, \frac{3}{4})$

12.
$$R(x) = \frac{6}{x^2 - x - 6} = \frac{6}{(x - 3)(x + 2)}$$

- the domain is all x except x = -2, 3; the y-intercept is at R(0) = -1
- there is no *x*-intercept
- the vertical asymptotes are x = -2 and x = 3
- the horizontal asymptote is y = 0
- table:

Interval	$(-\infty, -2)$	(-2, 3)	$(3,\infty)$
Number Chosen	-3	0	4
Value of R	R(-3) = 1	R(0) = -1	R(4) = 1
Location of graph	above x -axis	below x -axis	above x -axis
Point on graph	(-3,1)	(0, -1)	(4, 1)

17.
$$R(x) = \frac{x^2}{x^2 + x - 6} = \frac{x^2}{(x+3)(x-2)}$$

- the domain is all x except x = -3, 2; the y-intercept is at R(0) = 0
- the x-intercept is at x = 0
- the vertical asymptotes are x = -3 and x = 2
- the horizontal asymptote is y = 1
- table:

Interval	$(-\infty, -3)$	(-3, 0)	(0, 2)	$(2,\infty)$
Number Chosen	-4	-1	1	3
Value of R	$R(-4) = \frac{8}{3}$	$R(-1) = -\frac{1}{6}$	$R(1) = -\frac{1}{4}$	$R(3) = \frac{3}{2}$
Location of graph	above x -axis	below x -axis	below x -axis	above x -axis
Point on graph	$(-4, \frac{8}{3})$	$(-1, -\frac{1}{6})$	$(1, -\frac{1}{4})$	$(3, \frac{3}{2})$

35.
$$R(x) = \frac{6x^2 - 7x - 3}{2x^2 - 7x + 6} = \frac{(3x+1)(2x-3)}{(2x-3)(x-2)}$$

- the domain is all x except $x = \frac{3}{2}$, 2; the y-intercept is at $R(0) = -\frac{1}{2}$
- the *x*-intercept is at $x = -\frac{1}{3}$
- the vertical asymptote is x = 2
- the horizontal asymptote is y = 3
- there is a hole at $x = \frac{3}{2}$
- $\bullet\,$ table:

Interval	$\left(-\infty,-\frac{1}{3}\right)$	$(-\frac{1}{3},2)$	$(2,\infty)$
Number Chosen	-1	0	3
Value of R	$R(-1) = \frac{2}{3}$	$R(0) = -\frac{1}{2}$	R(3) = 10
Location of graph	above x -axis	below x -axis	above x -axis
Point on graph	$(-1, \frac{2}{3})$	$(0, -\frac{1}{2})$	(3, 10)

45. A rational function that might have the given graph is:

$$R(x) = \frac{x^2}{(x+2)(x-2)}$$

46. A rational function that might have the given graph is:

$$R(x) = -\frac{x}{(x+1)(x-1)}$$