Math 121 – Section 4.4 Solutions

3. Solve $f(x) = (x-5)^2(x+2) < 0$.

Interval	$(-\infty, -2)$	(-2, 5)	$(5,\infty)$
Number Chosen	-3	0	6
Value of f	f(-3) = -64	f(0) = 50	f(6) = 8
Conclusion	negative	positive	positive

The solution is x < -2. In interval notation, the solution is $(-\infty, -2)$.

5. Solve
$$f(x) = x^3 - 4x^2 = x^2(x-4) > 0$$
.

Interval	$(-\infty, 0)$	(0, 4)	$(4,\infty)$
Number Chosen	-1	1	5
Value of f	f(-1) = -5	f(1) = -3	f(5) = 25
Conclusion	negative	negative	positive

The solution is x > 4. In interval notation, the solution is $(4, \infty)$.

11. Solve $f(x) = (x - 1)(x^2 + x + 4) \ge 0$.

First, note that $x^2 + x + 4 = 0$ has no real solutions since the discriminant is negative:

$$b^2 - 4ac = 1^2 - 4(1)(4) = -15$$

Therefore, the only real zero of f(x) is x = 1.

Interval	$(-\infty, 1)$	$(1,\infty)$
Number Chosen	0	2
Value of f	f(0) = -4	f(2) = 10
Conclusion	negative	positive

The solution is $x \ge 1$. In interval notation, the solution is $[1, \infty)$.

18. Solve $x^4 < 9x^2$.

First, rewrite the inequality and factor:

$$\begin{aligned} x^4 &< 9x^2 \\ x^4 - 9x^2 &< 0 \\ x^2(x^2 - 9) &< 0 \\ f(x) &= x^2(x + 3)(x - 3) &< 0 \end{aligned}$$

Therefore, the real zeros of f(x) are x = -3, 0, 3.

Interval	$(-\infty, -3)$	(-3, 0)	(0, 3)	$(3,\infty)$
Number Chosen	-4	-1	1	4
Value of f	f(-4) = 112	f(-1) = -8	f(1) = -8	f(4) = 112
Conclusion	positive	negative	negative	positive

The solution is -3 < x < 0 or 0 < x < 3. In interval notation, the solution is $(-3, 0) \cup (0, 3)$.

20. Solve $x^3 > 1$.

First, rewrite the inequality and factor:

$$\begin{aligned} x^3 > 1 \\ x^3 - 1 > 0 \\ f(x) = (x - 1)(x^2 + x + 1) > 0 \end{aligned}$$

Therefore, the real zero of f(x) is x = 1 since $x^2 + x + 1 = 0$ has no real solutions (the discriminant is negative).

Interval	$(-\infty, 1)$	$(1,\infty)$
Number Chosen	0	2
Value of f	f(0) = -1	f(2) = 7
Conclusion	negative	positive

The solution is x > 1. In interval notation, the solution is $(1, \infty)$.

21. Solve
$$f(x) = \frac{x+1}{x-1} > 0.$$

First, the real zeros of the numerator and denominator of f(x) are x = -1, 1.

Interval	$(-\infty, -1)$	(-1, 1)	$(1,\infty)$
Number Chosen	-2	0	2
Value of f	$f(-2) = \frac{1}{3}$	f(0) = -1	f(2) = 3
Conclusion	positive	negative	positive

The solution is x < -1 or x > 1. In interval notation, the solution is $(-\infty, -1) \cup (1, \infty)$.

23. Solve
$$f(x) = \frac{(x-1)(x+1)}{x} \le 0$$
.

First, the real zeros of the numerator and denominator of f(x) are x = -1, 0, 1.

Interval	$(-\infty, -1)$	(-1, 0)	(0, 1)	$(1,\infty)$
Number Chosen	-2	$-\frac{1}{2}$	$\frac{1}{2}$	2
Value of f	$f(-2) = -\frac{3}{2}$	$f(-\frac{1}{2}) = \frac{3}{2}$	$f(\frac{1}{2}) = -\frac{3}{2}$	$f(2) = \frac{3}{2}$
Conclusion	negative	positive	negative	positive

The solution is $x \leq -1$ or $0 < x \leq 1$. In interval notation, the solution is $(-\infty, -1] \cup (0, 1]$.

27. Solve $6x - 5 < \frac{6}{x}$.

First, rewrite the inequality:

$$6x - 5 < \frac{6}{x}$$

$$6x - 5 - \frac{6}{x} < 0$$

$$\frac{x(6x - 5) - 6}{x} < 0$$

$$\frac{6x^2 - 5x - 6}{x} < 0$$

$$f(x) = \frac{(3x + 2)(2x - 3)}{x} < 0$$

The real zeros of the numerator and denominator of f(x) are $x = -\frac{2}{3}, 0, \frac{3}{2}$.

Interval	$\left(-\infty,-\frac{2}{3}\right)$	$(-\frac{2}{3},0)$	$(0, \frac{3}{2})$	$\left(\frac{3}{2},\infty\right)$
Number Chosen	-1	$-\frac{1}{2}$	1	2
Value of f	f(-1) = -5	$f(-\frac{1}{2}) = 4$	f(1) = -5	f(2) = 4
Conclusion	negative	positive	negative	positive

The solution is x < -1 or $-\frac{2}{3} < x < 0$. In interval notation, the solution is $(-\infty, -1) \cup (-\frac{2}{3}, 0)$.