Math 121 - Section 4.4 Solutions

3. Solve $f(x)=(x-5)^{2}(x+2)<0$.

Interval	$(-\infty,-2)$	$(-2,5)$	$(5, \infty)$
Number Chosen	-3	0	6
Value of f	$f(-3)=-64$	$f(0)=50$	$f(6)=8$
Conclusion	negative	positive	positive

The solution is $x<-2$. In interval notation, the solution is $(-\infty,-2)$.
5. Solve $f(x)=x^{3}-4 x^{2}=x^{2}(x-4)>0$.

Interval	$(-\infty, 0)$	$(0,4)$	$(4, \infty)$
Number Chosen	-1	1	5
Value of f	$f(-1)=-5$	$f(1)=-3$	$f(5)=25$
Conclusion	negative	negative	positive

The solution is $x>4$. In interval notation, the solution is $(4, \infty)$.
11. Solve $f(x)=(x-1)\left(x^{2}+x+4\right) \geq 0$.

First, note that $x^{2}+x+4=0$ has no real solutions since the discriminant is negative:

$$
b^{2}-4 a c=1^{2}-4(1)(4)=-15
$$

Therefore, the only real zero of $f(x)$ is $x=1$.

Interval	$(-\infty, 1)$	$(1, \infty)$
Number Chosen	0	2
Value of f	$f(0)=-4$	$f(2)=10$
Conclusion	negative	positive

The solution is $x \geq 1$. In interval notation, the solution is $[1, \infty)$.
18. Solve $x^{4}<9 x^{2}$.

First, rewrite the inequality and factor:

$$
\begin{aligned}
x^{4} & <9 x^{2} \\
x^{4}-9 x^{2} & <0 \\
x^{2}\left(x^{2}-9\right) & <0 \\
f(x)=x^{2}(x+3)(x-3) & <0
\end{aligned}
$$

Therefore, the real zeros of $f(x)$ are $x=-3,0,3$.

Interval	$(-\infty,-3)$	$(-3,0)$	$(0,3)$	$(3, \infty)$
Number Chosen	-4	-1	1	4
Value of f	$f(-4)=112$	$f(-1)=-8$	$f(1)=-8$	$f(4)=112$
Conclusion	positive	negative	negative	positive

The solution is $-3<x<0$ or $0<x<3$. In interval notation, the solution is $(-3,0) \cup(0,3)$.
20. Solve $x^{3}>1$.

First, rewrite the inequality and factor:

$$
\begin{aligned}
x^{3} & >1 \\
x^{3}-1 & >0 \\
f(x)=(x-1)\left(x^{2}+x+1\right) & >0
\end{aligned}
$$

Therefore, the real zero of $f(x)$ is $x=1$ since $x^{2}+x+1=0$ has no real solutions (the discriminant is negative).

Interval	$(-\infty, 1)$	$(1, \infty)$
Number Chosen	0	2
Value of f	$f(0)=-1$	$f(2)=7$
Conclusion	negative	positive

The solution is $x>1$. In interval notation, the solution is $(1, \infty)$.
21. Solve $f(x)=\frac{x+1}{x-1}>0$.

First, the real zeros of the numerator and denominator of $f(x)$ are $x=-1,1$.

Interval	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
Number Chosen	-2	0	2
Value of f	$f(-2)=\frac{1}{3}$	$f(0)=-1$	$f(2)=3$
Conclusion	positive	negative	positive

The solution is $x<-1$ or $x>1$. In interval notation, the solution is $(-\infty,-1) \cup(1, \infty)$.
23. Solve $f(x)=\frac{(x-1)(x+1)}{x} \leq 0$.

First, the real zeros of the numerator and denominator of $f(x)$ are $x=-1,0,1$.

Interval	$(-\infty,-1)$	$(-1,0)$	$(0,1)$	$(1, \infty)$
Number Chosen	-2	$-\frac{1}{2}$	$\frac{1}{2}$	2
Value of f	$f(-2)=-\frac{3}{2}$	$f\left(-\frac{1}{2}\right)=\frac{3}{2}$	$f\left(\frac{1}{2}\right)=-\frac{3}{2}$	$f(2)=\frac{3}{2}$
Conclusion	negative	positive	negative	positive

The solution is $x \leq-1$ or $0<x \leq 1$. In interval notation, the solution is $(-\infty,-1] \cup(0,1]$.
27. Solve $6 x-5<\frac{6}{x}$.

First, rewrite the inequality:

$$
\begin{aligned}
6 x-5 & <\frac{6}{x} \\
6 x-5-\frac{6}{x} & <0 \\
\frac{x(6 x-5)-6}{x} & <0 \\
\frac{6 x^{2}-5 x-6}{x} & <0 \\
f(x)=\frac{(3 x+2)(2 x-3)}{x} & <0
\end{aligned}
$$

The real zeros of the numerator and denominator of $f(x)$ are $x=-\frac{2}{3}, 0, \frac{3}{2}$.

Interval	$\left(-\infty,-\frac{2}{3}\right)$	$\left(-\frac{2}{3}, 0\right)$	$\left(0, \frac{3}{2}\right)$	$\left(\frac{3}{2}, \infty\right)$
Number Chosen	-1	$-\frac{1}{2}$	1	2
Value of f	$f(-1)=-5$	$f\left(-\frac{1}{2}\right)=4$	$f(1)=-5$	$f(2)=4$
Conclusion	negative	positive	negative	positive

The solution is $x<-1$ or $-\frac{2}{3}<x<0$. In interval notation, the solution is $(-\infty,-1) \cup\left(-\frac{2}{3}, 0\right)$.

