Math 121 - Section 4.5 Solutions

12. The remainder when $f(x)=-4 x^{3}+5 x^{2}+8$ is divided by $x+3$ is:

$$
f(-3)=-4(-3)^{3}+5(-3)^{2}+8=161
$$

14. The remainder when $f(x)=4 x^{4}-15 x^{2}-4$ is divided by $x-2$ is:

$$
f(2)=4(2)^{4}-15(2)^{2}-4=0
$$

21. $f(x)=-4 x^{7}+x^{3}-x^{2}+2$

- $f(x)$ has at most 7 real zeros since the degree is 7
- there are 3 sign changes in $f(x) \Rightarrow f(x)$ has either 3 or 1 positive real zeros
- since $f(-x)=4 x^{7}-x^{3}-x^{2}+2$, there are 2 sign changes in $f(-x) \Rightarrow f(x)$ has either 2 or 0 negative real zeros

30. $f(x)=x^{5}-x^{4}+x^{3}-x^{2}+x-1$

- $f(x)$ has at most 5 real zeros since the degree is 5
- there are 5 sign changes in $f(x) \Rightarrow f(x)$ has either 5,3 , or 1 positive real zeros
- since $f(-x)=-x^{5}-x^{4}-x^{3}-x^{2}-1$, there are 0 sign changes in $f(-x) \Rightarrow f(x)$ has 0 negative real zeros

34. Given $f(x)=x^{5}-x^{4}+2 x^{2}+3$ we have $a_{0}=3$ and $a_{5}=1$. The factors of a_{0} are $p= \pm 1, \pm 3$. The factors of a_{5} are $q= \pm 1$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm 3
$$

38. Given $f(x)=6 x^{4}-x^{2}+2$ we have $a_{0}=2$ and $a_{4}=6$. The factors of a_{0} are $p= \pm 1, \pm 2$. The factors of a_{4} are $q= \pm 1, \pm 2, \pm 3, \pm 6$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}
$$

45. Given $f(x)=x^{3}+2 x^{2}-5 x-6$ we have $a_{0}=-6$ and $a_{3}=1$. The factors of a_{0} are $p= \pm 1, \pm 2, \pm 3, \pm 6$. The factors of a_{3} are $q= \pm 1$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm 2, \pm 3, \pm 6
$$

Checking some of these we have:

$$
\begin{aligned}
f(1) & =1+2-5-6=-8 \\
f(-1) & =-1+2+5-6=0 \\
f(2) & =8+8-10-6=0 \\
f(-2) & =-8+8+10-6=4 \\
f(3) & =27+18-15-6=24 \\
f(-3) & =-27+18+15-6=0
\end{aligned}
$$

Therefore, since $x=-1,2,-3$ are the real zeros, $f(x)$ is factored as follows:

$$
f(x)=(x+1)(x-2)(x+3)
$$

52. Given $f(x)=2 x^{4}-x^{3}-5 x^{2}+2 x+2$ we have $a_{0}=2$ and $a_{4}=2$. The factors of a_{0} are $p= \pm 1, \pm 2$. The factors of a_{4} are $q= \pm 1, \pm 2$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm 2, \pm \frac{1}{2}
$$

Checking some of these we have:

$$
\begin{aligned}
f(1) & =2-1-5+2+2=0 \\
f(-1) & =2+1-5-2+2=-2 \\
f(2) & =32-8-20+4+2=10 \\
f(-2) & =32+8-20-4+2=18 \\
f\left(\frac{1}{2}\right) & =\frac{1}{8}-\frac{1}{8}-\frac{5}{4}+1+2=\frac{7}{4} \\
f\left(-\frac{1}{2}\right) & =\frac{1}{8}+\frac{1}{8}-\frac{5}{4}-1+2=0
\end{aligned}
$$

Therefore, since $x=1,-\frac{1}{2}$ are the rational real zeros, $f(x)$ is factored as follows:

$$
f(x)=(x-1)(2 x+1) q(x)=\left(2 x^{2}-x-1\right) q(x)
$$

To find $q(x)$ we use long division:

$$
\begin{aligned}
& \left.2 x^{2}-x-1\right) \frac{x^{2} \quad-2}{2 x^{4}-x^{3}-5 x^{2}+2 x+2} \\
& \frac{-2 x^{4}+x^{3}+x^{2}}{-4 x^{2}}+2 x+2 \\
& \begin{array}{r}
4 x^{2}-2 x-2 \\
0
\end{array}
\end{aligned}
$$

Solving $q(x)=x^{2}-2=0$ we have:

$$
\begin{aligned}
q(x)=x^{2}-2 & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

Therefore, $f(x)$ is factored as follows:

$$
f(x)=(x-1)(2 x+1)(x-\sqrt{2})(x+\sqrt{2})
$$

57. To solve $f(x)=x^{4}-x^{3}+2 x^{2}-4 x-8=0$ we look for the rational real zeros. The factors of $a_{0}=-8$ are $p= \pm 1, \pm 2, \pm 4, \pm 8$. The factors of $a_{4}=1$ are $q= \pm 1$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm 2, \pm 4, \pm 8
$$

Checking some of these we have:

$$
\begin{aligned}
f(1) & =1-1+2-4-8=-12 \\
f(-1) & =1+1+2+4-8=0 \\
f(2) & =16-8+8-8-8=0
\end{aligned}
$$

Therefore, since $x=-1,2$ are rational real zeros, $f(x)$ is factored as follows:

$$
f(x)=(x+1)(x-2) q(x)=\left(x^{2}-x-2\right) q(x)
$$

To find $q(x)$ we use long division:

$$
\begin{array}{r}
\left.x^{2}-x-2\right) \begin{array}{r}
x^{2}+4 \\
\\
x^{4}-x^{3}+2 x^{2}-4 x-8 \\
-x^{4}+x^{3}+2 x^{2} \\
4 x^{2}-4 x-8 \\
\frac{-4 x^{2}+4 x+8}{0}
\end{array}
\end{array}
$$

Therefore, $f(x)$ is factored as follows:

$$
f(x)=(x+1)(x-2)\left(x^{2}+4\right)
$$

62. To solve $f(x)=2 x^{3}-11 x^{2}+10 x+8=0$ we look for the rational real zeros. The factors of $a_{0}=8$ are $p= \pm 1, \pm 2, \pm 4, \pm 8$. The factors of $a_{3}=2$ are $q= \pm 1, \pm 2$. Therefore, the potential rational real zeros of $f(x)$ are:

$$
\frac{p}{q}= \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}
$$

Checking some of these we have:

$$
\begin{aligned}
f(1) & =2-11+10+8=9 \\
f(-1) & =-2-11-10+8=-15 \\
f(2) & =16-44+20+8=0 \\
f(-2) & =-16-44-20+8=-72 \\
f(4) & =128-176+40+8=0 \\
f(-4) & =-128-176-40+8=-336 \\
f\left(\frac{1}{2}\right) & =\frac{1}{4}-\frac{11}{4}+5+8=\frac{21}{2} \\
f\left(-\frac{1}{2}\right) & =-\frac{1}{4}-\frac{11}{4}-5+8=0
\end{aligned}
$$

Therefore, since $x=2,4,-\frac{1}{2}$ are the real zeros, $f(x)$ is factored as follows:

$$
f(x)=(x-2)(x-4)(2 x+1)
$$

