Math 121 - Section 5.1 Solutions

7. (a) $(f \circ g)(1)=f(g(1))=f(0)=-1$
(b) $(f \circ g)(-1)=f(g(-1))=f(0)=-1$
(c) $(g \circ f)(-1)=g(f(-1))=g(-3)=8$
(d) $(g \circ f)(0)=g(f(0))=g(-1)=0$
(e) $(g \circ g)(-2)=g(g(-2))=g(3)=8$
(f) $(f \circ f)(-1)=f(f(-1))=f(-3)=-7$
8. (a) $g(f(-1))=g(1)=4$
(b) $g(f(0))=g(0)=5$
(c) $f(g(-1))=f(3)=-1$
(d) $f(g(4))=f(2)=-2$
9. $f(x)=3 x+2, g(x)=2 x^{2}-1$
(a) $(f \circ g)(4)=f(g(4))=f(31)=95$
(b) $(g \circ f)(2)=g(f(2))=g(8)=127$
(c) $(f \circ f)(1)=f(f(1))=f(5)=17$
(d) $(g \circ g)(0)=g(g(0))=g(-1)=1$
10. $f(x)=|x|, g(x)=\frac{1}{x^{2}+1}$
(a) $(f \circ g)(4)=f(g(4))=f\left(\frac{1}{17}\right)=\frac{1}{17}$
(b) $(g \circ f)(2)=g(f(2))=g(2)=\frac{1}{5}$
(c) $(f \circ f)(1)=f(f(1))=f(1)=1$
(d) $(g \circ g)(0)=g(g(0))=g(1)=\frac{1}{2}$
11. Given $f(x)=\frac{3}{x-1}$ and $g(x)=\frac{2}{x}$, the composite function $f \circ g$ is:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{2}{x}\right) \\
& =\frac{3}{\frac{2}{x}-1} \\
& =\frac{3 x}{2-x}
\end{aligned}
$$

The domain of $g(x)$ is all x except $x=0$. The domain of $f(g(x))$ is all x except $x=2$. Therefore, the domain of $f \circ g$ is all x except $x=0,2$.
26. Given $f(x)=x-2$ and $g(x)=\sqrt{1-x}$, the composite function $f \circ g$ is:

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(\sqrt{1-x}) \\
& =\sqrt{1-x}-2
\end{aligned}
$$

The domains of both $g(x)$ and $f(g(x))$ are $x \leq 1$. Therefore, the domain of $f \circ g$ is $x \leq 1$
35. $f(x)=\frac{3}{x-1}$ and $g(x)=\frac{2}{x}$
(a) The domain of $f \circ g$ is all x except $x=0,2$ (from Problem 21).
(b) The composite function $g \circ f$ is:

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(\frac{3}{x-1}\right) \\
& =\frac{2}{\frac{3}{x-1}} \\
& =\frac{2}{3}(x-1)
\end{aligned}
$$

The domain of $f(x)$ is all x except $x=1$. The domain of $g(f(x))$ is all x. Therefore, the domain of $g \circ f$ is all x except $x=1$.
(c) The composite function $f \circ f$ is:

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x)) \\
& =f\left(\frac{3}{x-1}\right) \\
& =\frac{3}{\frac{3}{x-1}-1} \\
& =\frac{3(x-1)}{3-(x-1)} \\
& =\frac{3(x-1)}{4-x}
\end{aligned}
$$

The domain of $f(x)$ is all x except $x=1$. The domain of $f(f(x))$ is all x except $x=4$. Therefore, the domain of $f \circ f$ is all x except $x=1,4$.
(d) The composite function $g \circ g$ is:

$$
\begin{aligned}
(g \circ g)(x) & =g(g(x)) \\
& =g\left(\frac{2}{x}\right) \\
& =\frac{2}{\frac{2}{x}} \\
& =x
\end{aligned}
$$

The domain of $g(x)$ is all x except $x=0$. The domain of $g(g(x))$ is all x. Therefore, the domain of $g \circ g$ is all x except $x=0$
45. $f(x)=2 x$ and $g(x)=\frac{1}{2} x$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{1}{2} x\right) \\
& =2\left(\frac{1}{2} x\right) \\
& =x \\
(g \circ f)(x) & =g(f(x)) \\
& =g(2 x) \\
& =\frac{1}{2}(2 x) \\
& =x
\end{aligned}
$$

53. Two possible functions f and g that satisfy:

$$
f \circ g=(2 x+3)^{4}
$$

are $f(x)=x^{4}$ and $g(x)=2 x+3$.

