Math 121 - Section 5.2 Solutions

13. The function is not one-to-one since the inputs $x=2,-3$ have the same output $y=6$.
14. The function is not one-to-one. The graph does not pass the horizontal line test.
15. The function is not one-to-one. The graph does not pass the horizontal line test (there are infinitely many intersections of the graph with the line $y=2$).
16. $f(x)=3 x+4, g(x)=\frac{1}{3}(x-4)$

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{1}{3}(x-4)\right) \\
& =3 \cdot \frac{1}{3}(x-4)+4 \\
& =x-4+4 \\
& =x \\
g(f(x)) & =g(3 x+4) \\
& =\frac{1}{3}(3 x+4-4) \\
& =x
\end{aligned}
$$

40. $f(x)=\frac{x-5}{2 x+3}, g(x)=\frac{3 x+5}{1-2 x}$

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{3 x+5}{1-2 x}\right) \\
& =\frac{\frac{3 x+5}{1-2 x}-5}{2 \cdot \frac{3 x+5}{1-2 x}+3} \\
& =\frac{3 x+5-5(1-2 x)}{2(3 x+5)+3(1-2 x)} \\
& =\frac{13 x}{13} \\
& =x \\
g(f(x)) & =g\left(\frac{x-5}{2 x+3}\right) \\
& =\frac{3 \cdot \frac{x-5}{2 x+3}+5}{1-2 \cdot \frac{x-5}{2 x+3}} \\
& =\frac{3(x-5)+5(2 x+3)}{2 x+3-2(x-5)} \\
& =\frac{13 x}{13} \\
& =x
\end{aligned}
$$

41.
42. The inverse of $f(x)=3 x$ is found as follows:

- Let $y=3 x$.
- Switch x and $y: x=3 y$.
- Solve for y in terms of $x: y=\frac{x}{3}$.

The inverse is $f^{-1}(x)=\frac{x}{3}$. The domain and range of both f and f^{-1} are all real numbers.
58. The inverse of $f(x)=\frac{4}{x+2}$ is found as follows:

- Let $y=\frac{4}{x+2}$.
- Switch x and $y: x=\frac{4}{y+2}$.
- Solve for y in terms of $x: y=\frac{4}{x}-2$.

The inverse is $f^{-1}(x)=\frac{4}{x}-2$. The domain of f (and the range of f^{-1}) is all real numbers except -2 . The range of f (and the domain of f^{-1}) is all real numbers except 0 .
60. The inverse of $f(x)=\frac{4}{2-x}$ is found as follows:

- Let $y=\frac{4}{2-x}$.
- Switch x and y : $x=\frac{4}{2-y}$.
- Solve for y in terms of $x: y=2-\frac{4}{x}$.

The inverse is $f^{-1}(x)=2-\frac{4}{x}$. The domain of f (and the range of f^{-1}) is all real numbers except 2 . The range of f (and the domain of f^{-1}) is all real numbers except 0 .
65. The inverse of $f(x)=\frac{3 x+4}{2 x-3}$ is found as follows:

- Let $y=\frac{3 x+4}{2 x-3}$.
- Switch x and $y: x=\frac{3 y+4}{2 y-3}$.
- Solve for y in terms of x :

$$
\begin{aligned}
x & =\frac{3 y+4}{2 y-3} \\
x(2 y-3) & =3 y+4 \\
2 x y-3 x & =3 y+4 \\
2 x y-3 y & =3 x+4 \\
y(2 x-3) & =3 x+4 \\
y & =\frac{3 x+4}{2 x-3}
\end{aligned}
$$

The inverse is $f^{-1}(x)=\frac{3 x+4}{2 x-3}$. The domain of f (and the range of f^{-1}) is all real numbers except $\frac{3}{2}$. The range of f (and the domain of f^{-1}) is all real numbers except $\frac{3}{2}$.

