Math 121 - Section 5.3 Solutions

59. Solve $2^{-x}=16$.

$$
\begin{aligned}
2^{-x} & =16 \\
2^{-x} & =2^{4} \\
-x & =4 \\
x & =-4
\end{aligned}
$$

60. Solve $3^{-x}=81$.

$$
\begin{aligned}
3^{-x} & =81 \\
3^{-x} & =3^{4} \\
-x & =4 \\
x & =-4
\end{aligned}
$$

62. Solve $\left(\frac{1}{4}\right)^{x}=\frac{1}{64}$.

$$
\begin{aligned}
\left(\frac{1}{4}\right)^{x} & =\frac{1}{64} \\
\left(\frac{1}{4}\right)^{x} & =\left(\frac{1}{4}\right)^{3} \\
x & =3
\end{aligned}
$$

66. Solve $4^{x^{2}}=2^{x}$.

$$
\begin{aligned}
4^{x^{2}} & =2^{x} \\
\left(2^{2}\right)^{x^{2}} & =2^{x} \\
2^{2 x^{2}} & =2^{x} \\
2 x^{2} & =x \\
2 x^{2}-x & =0 \\
x(2 x-1) & =0 \\
x=0, x & =\frac{1}{2}
\end{aligned}
$$

71. Solve $4^{x} \cdot 2^{x^{2}}=16^{2}$.

$$
\begin{aligned}
4^{x} \cdot 2^{x^{2}} & =16^{2} \\
\left(2^{2}\right)^{x} \cdot 2^{x^{2}} & =\left(2^{4}\right)^{2} \\
2^{2 x} \cdot 2^{x^{2}} & =2^{8} \\
x^{2 x+x^{2}} & =2^{8} \\
2 x+x^{2} & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x=-4, x & =2
\end{aligned}
$$

77. Suppose that $f(x)=2^{x}$.
(a) $f(4)=2^{4}=16$. The point on the graph of f is $(4,16)$.
(b) If $f(x)=\frac{1}{16}$ then $x=-4$. The point on the graph of f is $\left(-4, \frac{1}{16}\right)$.
78. If $4^{x}=7$ then

$$
\begin{aligned}
4^{x} & =7 \\
\left(4^{x}\right)^{-2} & =(7)^{-2} \\
4^{-2 x} & =\frac{1}{49}
\end{aligned}
$$

