Math 121 - Section 7.7 Solutions

7. Solve $2 \sin \theta+3=2$ on the interval $[0,2 \pi)$.

$$
\begin{aligned}
2 \sin \theta+3 & =2 \\
2 \sin \theta & =-1 \\
\sin \theta & =-\frac{1}{2}
\end{aligned}
$$

Therefore, the solutions are $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
9. Solve $4 \cos ^{2} \theta=1$ on the interval $[0,2 \pi)$.

$$
\begin{aligned}
4 \cos ^{2} \theta & =1 \\
\cos ^{2} \theta & =\frac{1}{4} \\
\cos \theta & = \pm \frac{1}{2}
\end{aligned}
$$

Therefore, the solutions are $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
15. Solve $\cos (2 \theta)=-\frac{1}{2}$ on the interval $[0,2 \pi)$.

The solutions are:

$$
\begin{aligned}
& 2 \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{2 \pi}{3}+2 \pi, \frac{4 \pi}{3}+2 \pi \\
& 2 \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{8 \pi}{3}, \frac{10 \pi}{3} \\
& \theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

24. Solve $5 \csc \theta-3=2$ on the interval $[0,2 \pi)$.

$$
\begin{array}{r}
5 \csc \theta-3=2 \\
5 \csc \theta=5 \\
\csc \theta=1 \\
\sin \theta=1
\end{array}
$$

Therefore, the solution is $\theta=\frac{\pi}{2}$
31. Solve $\sin \theta=\frac{1}{2}$ and give a general formula for all solutions. Then list six solutions.

The two base solutions are $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$.
The remaining solutions are these solutions plus or minus a multiple of 2π :

$$
\theta=\frac{\pi}{6} \pm 2 n \pi, \quad \frac{5 \pi}{6} \pm 2 n \pi \quad \text { where } \quad n=0,1,2, \ldots
$$

Six solutions are:

$$
\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}, \frac{25 \pi}{6}, \frac{29 \pi}{6}
$$

37. Solve $\cos (2 \theta)=-\frac{1}{2}$ and give a general formula for all solutions. Then list six solutions.

Two base solutions are:

$$
\begin{aligned}
2 \theta & =\frac{2 \pi}{3}, \frac{4 \pi}{3} \\
\theta & =\frac{\pi}{3}, \frac{2 \pi}{3}
\end{aligned}
$$

The remaining solutions are these solutions plus or minus a multiple of π (not 2π since the original equation has 2θ):

$$
\theta=\frac{\pi}{3} \pm n \pi, \quad \frac{2 \pi}{3} \pm n \pi \quad \text { where } \quad n=0,1,2, \ldots
$$

Six solutions are:

$$
\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}
$$

41. One solution to $\sin \theta=0.4$ on the interval $[0,2 \pi)$ is:

$$
\theta=\sin ^{-1} 0.4 \approx 0.41
$$

The other solution is:

$$
\theta=\pi-\sin ^{-1} 0.4 \approx 2.73
$$

