Math 121 - Section 8.4 Solutions

5. The height of the triangle is:

$$
h=2 \sin 45^{\circ}=\sqrt{2}
$$

Since the base is $c=4$, the area is:

$$
A=\frac{1}{2} c h=\frac{1}{2}(4)(\sqrt{2})=2 \sqrt{2}
$$

7. Using the Law of Cosines, the side c is:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
c^{2} & =2^{2}+3^{2}-2(2)(3) \cos 95^{\circ} \\
c^{2} & =4+9-12 \cos 95^{\circ} \\
c^{2} & =14.045 \\
c & =3.75
\end{aligned}
$$

Using the Law of Sines, the angle B is:

$$
\begin{aligned}
\frac{\sin B}{b} & =\frac{\sin C}{c} \\
\frac{\sin B}{3} & =\frac{\sin 95^{\circ}}{3.75} \\
\sin B & =\frac{3}{3.75} \sin 95^{\circ} \\
\sin B & =0.797 \\
B & =52.89^{\circ}
\end{aligned}
$$

The height of the triangle is:

$$
h=2 \sin 52.89^{\circ}=1.59
$$

Since the base is $c=3.75$, the area is:

$$
A=\frac{1}{2} c h=\frac{1}{2}(3.75)(1.59)=2.99
$$

11. Use Heron's formula with $a=9, b=6$, and $c=4$:

$$
s=\frac{1}{2}(a+b+c)=\frac{19}{2}
$$

Then

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& A=\sqrt{\frac{19}{2}\left(\frac{1}{2}\right)\left(\frac{7}{2}\right)\left(\frac{11}{2}\right)} \\
& A=\frac{\sqrt{1463}}{4}
\end{aligned}
$$

15. The height is:

$$
h=1 \sin 80^{\circ}=0.98
$$

Since the base is $c=3$, the area is:

$$
A=\frac{1}{2} c h=\frac{1}{2}(3)(0.98)=1.48
$$

19. By observation, the triangle with sides $a=12, b=13$, and $c=5$ is a right triangle. Therefore, the area is:

$$
A=\frac{1}{2} a c=\frac{1}{2}(12)(5)=30
$$

33. The area of the sector is:

$$
A_{\text {sector }}=\frac{1}{2} r^{2} \theta=\frac{1}{2}(8)^{2}\left(\frac{70 \pi}{180}\right)=\frac{112 \pi}{9}
$$

The height of the triangle is:

$$
h=8 \sin 70^{\circ}=7.52
$$

Since the base is 8 , the area of the triangle is:

$$
A_{\text {triangle }}=\frac{1}{2}(8)(7.52)=30.07
$$

The area of the shaded region is:

$$
A=A_{\text {sector }}-A_{\text {triangle }}=\frac{112 \pi}{9}-30.07=9.03
$$

