Exam 1 Solutions

1. $(20 \mathrm{pts})$ Let $A=\left[\begin{array}{rrr}1 & 0 & 2 \\ 2 & -1 & 0 \\ 0 & 1 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(a) Write the row echelon form of A.
(b) Write the reduced row echelon form of A.
(c) Compute $\operatorname{det} A$ using whatever method you wish. If you use the 3×3 "trick", clearly indicate how you arrived at your answer.
(d) Find all solutions to $A \mathbf{x}=\mathbf{b}$ using whatever method you wish.

Solution:

(a)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 0 & 2 \\
2 & -1 & 0 \\
0 & 1 & 3
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -4 \\
0 & 1 & 3
\end{array}\right]} \\
& \xrightarrow{R_{3} \rightarrow R_{3}+R_{2}}\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -4 \\
0 & 0 & -1
\end{array}\right] \\
& \xrightarrow[R_{3} \rightarrow(-1) \times R_{3}]{R_{2} \rightarrow(-1) \times R_{2}}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(b)

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}-4 R_{3}]{R_{1} \rightarrow R_{1}-2 R_{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c)

$$
\begin{aligned}
\operatorname{det} A & =a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\
& =a_{11}(-1)^{1+1} \operatorname{det} M_{11}+a_{12}(-1)^{1+2} \operatorname{det} M_{12}+a_{13}(-1)^{1+3} \operatorname{det} M_{13} \\
& =(1)(1)\left|\begin{array}{rr}
-1 & 0 \\
1 & 3
\end{array}\right|+(0)(-1)\left|\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right|+(2)(1)\left|\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right| \\
& =-3+0+4
\end{aligned}
$$

$$
\operatorname{det} A=1
$$

(d) Using the same row operations on \mathbf{b} as those used to transform A to row reduced echelon form we get:

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Therefore, the solution is: $x_{1}=1, x_{2}=1, x_{3}=0$.
2. (15 pts) Let $S=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1}^{2}-x_{2}^{2}=0\right\}$. Is S a subspace of \mathbb{R}^{2} ? Clearly show why or why not.

Solution: Let $\mathbf{x}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ be vectors in S. These certainly satisfy the condition: $x_{1}^{2}-x_{2}^{2}=0$. Then $\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. However, $2^{2}-0^{2}=4 \neq 0$. Therefore, $\mathbf{x}+\mathbf{y} \notin S$. So S is not a subspace of \mathbb{R}^{2}.
3. (10 pts) Use Cramer's Rule to solve the system of equations $A \mathbf{x}=\mathbf{b}$ where:

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-4 & 5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
6 \\
7
\end{array}\right] .
$$

Solution:

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}=\frac{\left|\begin{array}{rr}
6 & 3 \\
7 & 5
\end{array}\right|}{\left|\begin{array}{rr}
2 & 3 \\
-4 & 5
\end{array}\right|}=\frac{9}{22} \\
& x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}=\frac{\left|\begin{array}{rr}
2 & 6 \\
-4 & 5
\end{array}\right|}{22}=\frac{34}{22}
\end{aligned}
$$

4. (25 pts) Consider the matrix:

$$
B=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 0 & -1 \\
0 & -2 & -3
\end{array}\right] .
$$

(a) Find lower and upper triangular matrices L and U, respectively, such that $B=L U$.
(b) Determine $N(B)$, the nullspace of B. Write your answer in set notation.

Solution:

(a)

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 0 & -1 \\
0 & -2 & -3
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & -3 \\
0 & -2 & -3
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-R_{2}}\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & -3 \\
0 & 0 & 0
\end{array}\right]=U
$$

The elementary matrices associated with each row operation are:

$$
E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Their inverses are:

$$
E_{1}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Since $E_{2} E_{1} B=U$, we have $B=\left(E_{2} E_{1}\right)^{-1} U=E_{1}^{-1} E_{2}^{-1} U=L U$. Therefore, we have:

$$
L=E_{1}^{-1} E_{2}^{-2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(b) To find the nullspace of B we must find all solutions to $B \mathbf{x}=\mathbf{0}$. To do this we will reduce B to row reduced echelon form. This process was already started above so we will continue the reduction of the U matrix:

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & -2 & -3 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[R_{2} \rightarrow(-1 / 2) \times R_{2}]{R_{1} \rightarrow R_{1}+\frac{1}{2} R_{2}}\left[\begin{array}{rrr}
1 & 0 & -5 / 2 \\
0 & 1 & 3 / 2 \\
0 & 0 & 0
\end{array}\right]
$$

Column 3 does not contain a pivot so x_{3} is a free variable. Let $x_{3}=\alpha$. Then from the row reduced echelon form of B we have:

$$
\begin{aligned}
x_{1} & =\frac{5}{2} \alpha \\
x_{2} & =-\frac{3}{2} \alpha
\end{aligned}
$$

The nullspace of B is:

$$
N(B)=\left\{\left.\alpha\left[\begin{array}{r}
5 / 2 \\
-3 / 2
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

5. (15 pts) Suppose $C \in \mathbb{R}^{n \times n}$ and $\operatorname{det} C=1$. True or false?
(a) C is singular. FALSE
(b) $C \mathbf{x}=\mathbf{b}$ will not have a solution for all $\mathbf{b} \in \mathbb{R}^{n}$. FALSE
(c) The row reduced echelon form of C is the identity matrix. TRUE
(d) The determinant of C^{T} is not necessarily 1. FALSE
(e) The nullspace of C only contains the zero vector, $\mathbf{0}$. TRUE
6. $(15 \mathrm{pts})$ Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(a) Write $\mathbf{b}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
(b) Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a spanning set for \mathbb{R}^{2} ? Clearly explain why or why not.
(c) Is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ a spanning set for \mathbb{R}^{2} ? Clearly explain why or why not.

Solution:

(a) $\mathbf{b}=\mathbf{v}_{2}-\mathbf{v}_{1}$ since $\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]-\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(b) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2} if any vector \mathbf{b} in \mathbb{R}^{2} can be written as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. That is, there must be a solution to $A \mathbf{x}=\mathbf{b}$, where $A=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$, for all choices of \mathbf{b}. Since $\operatorname{det} A=-3 \neq 0, A$ is invertible and $\mathbf{x}=A^{-1} \mathbf{b}$ is a solution to the system no matter what \mathbf{b} is. Therefore, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.
(c) Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for $\mathbb{R}^{2},\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also a spanning set since we can take any \mathbf{b} and form it as a linear combination of the given vectors as follows:

$$
\mathbf{b}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+0 \cdot \mathbf{v}_{3}
$$

where $\mathbf{x}=\left[\alpha_{1}, \alpha_{2}\right]^{T}$ is the solution to the system in part (b).

