Exam 2 Solutions

1. (15 pts) Consider the following vectors:

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}
2 \\
-2
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
4
\end{array}\right]
$$

(a) Are the vectors linearly independent? Clearly explain why or why not.
(b) Let A be the matrix whose columns are $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}, i.e. $A=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right]$. What is the rank of A ?

Solution:

(a) Let's make these vectors the columns of a matrix A as follows:

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
0 & -2 & 4
\end{array}\right]
$$

We look for all solutions to the system of equations $A \mathbf{x}=\mathbf{0}$. To do this, we find the row reduced echelon form of A :

$$
\operatorname{rref}(A)=\left[\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & -2
\end{array}\right]
$$

Since the third column does not contain a pivot, x_{3} will be a free variable. Therefore, there will be infinite solutions to $A \mathbf{x}=\mathbf{0}$ which means $\mathbf{x}=\mathbf{0}$ is not the only solution. Thus, the vectors are linearly dependent.
(b) Using the row reduced echelon form of A above, we find that there are 2 non-zero rows (2 pivots). Therefore, the rank of A is 2 .
2. (15 pts) Let $S=\operatorname{Span}\{1, \sin x, x\}$ be a subspace of $C[-1,1]$.
(a) Find a basis for S, clearly explaining why the functions you chose constitute a basis.
(b) Determine $\operatorname{dim} S$.

Solution:

(a) The functions $1, \sin x$, and x certainly form a spanning set for S. But are they linearly independent? We'll use the Wronskian to check this:

$$
\begin{aligned}
& W(x)=\left|\begin{array}{rrr}
1 & \sin x & x \\
0 & \cos x & 1 \\
0 & -\sin x & 0
\end{array}\right| \\
& W(x)=1 \cdot\left|\begin{array}{rr}
\cos x & 1 \\
-\sin x & 0
\end{array}\right| \\
& W(x)=\sin x
\end{aligned}
$$

Since $W(1)=\sin 1 \neq 0$, the functions are linearly independent. Therefore, the functions $1, \sin x$, and x form a basis for S.
(b) Since there are 3 functions in the basis, the dimension of S is 3 .
3. (15 pts) Consider the following mapping from \mathbb{R}^{2} into \mathbb{R}^{2} :

$$
L(\mathbf{x})=\left[\begin{array}{c}
0 \\
x_{1}-x_{2}
\end{array}\right]
$$

Show that L is a linear operator on \mathbb{R}^{2}.

To show that L is a linear operator, we must show that (1) $L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})$ and (2) L($\alpha \mathbf{x})=$ $\alpha L(\mathbf{x})$. Let's start with (1):

$$
\begin{aligned}
L(\mathbf{x}+\mathbf{y}) & =L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right) \\
& =L\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
0 \\
\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
x_{1}-x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
y_{1}-y_{2}
\end{array}\right] \\
L(\mathbf{x}+\mathbf{y}) & =L(\mathbf{x})+L(\mathbf{y})
\end{aligned}
$$

Now let's show (2):

$$
\begin{aligned}
L(\alpha \mathbf{x}) & =L\left(\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
0 \\
\alpha x_{1}-\alpha x_{2}
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
0 \\
x_{1}-x_{2}
\end{array}\right] \\
L(\alpha \mathbf{x}) & =\alpha L(\mathbf{x})
\end{aligned}
$$

4. (20 pts) Consider the following linear transformation from \mathbb{R}^{3} into \mathbb{R}^{3} :

$$
L(\mathbf{x})=\left[\begin{array}{c}
x_{1} \\
x_{1}-x_{2} \\
x_{1}-x_{3}
\end{array}\right]
$$

Find a matrix representation of L with respect to each basis below:
(a) the standard basis
(b) the basis vectors $\mathbf{b}_{1}, \mathbf{b}_{2}$, and \mathbf{b}_{3} where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Solution:

(a) We construct the columns of the matrix by plugging the standard basis vectors into the mapping:

$$
\begin{aligned}
& L\left(\mathbf{e}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& L\left(\mathbf{e}_{2}\right)=L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right] \\
& L\left(\mathbf{e}_{3}\right)=L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

Therefore, the matrix representation of L with respect to the standard basis is:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

(b) We start by plugging the \mathbf{b} basis vectors into the mapping:

$$
\begin{aligned}
& L\left(\mathbf{b}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& L\left(\mathbf{b}_{2}\right)=L\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& L\left(\mathbf{b}_{3}\right)=L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

We must now write these vectors as linear combinations of the \mathbf{b} basis vectors. This can be done by inspection as follows:

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=0 \cdot \mathbf{b}_{1}+1 \cdot \mathbf{b}_{2}+0 \cdot \mathbf{b}_{3}} \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=1 \cdot \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2}+0 \cdot \mathbf{b}_{3}} \\
& {\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=0 \cdot \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2}-1 \cdot \mathbf{b}_{3}}
\end{aligned}
$$

The columns of the matrix representation are made up of the coefficients in the linear combinations above:

$$
B=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

5. (15 pts) Let S be the subspace spanned by the following vectors:

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right], \quad \mathbf{w}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Find a basis for S^{\perp}, the orthogonal complement of S.

Solution: We start by defining $A^{T}=\left[\begin{array}{lll}\mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3}\end{array}\right]$. We know that $S=R\left(A^{T}\right)$ and, thus, $S^{\perp}=$ $R\left(A^{T}\right)^{\perp}=N(A)$. Therefore, to find a basis for S^{\perp} we must find a basis for $N(A)$. The matrix A row reduces as follows:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right] \rightarrow \operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Since columns 3 does not contain a pivot, x_{3} will be a free variable when we consider the set of solutions to $A \mathbf{x}=\mathbf{0}$. Letting $x_{3}=\alpha$ we then have $x_{1}=-x_{3}=-\alpha$ and $x_{2}=0$. Therefore, the nullspace of A is:

$$
N(A)=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

and a basis for S^{\perp} is the vector $\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]^{T}$.
6. (20 pts) Suppose we have the following data:

$$
\begin{array}{c|c|c|c|c}
x & -1 & 0 & 1 & 2 \\
\hline y & 0 & -1 & 1 & 3
\end{array}
$$

(a) Find a function of the form $y=a+b x^{2}$ that best fits the data in the least squares sense.
(b) Sketch the points and the best fit function on the graph provided.

Solution:

(a) We start by plugging the data points into the function $y=a+b x^{2}$ to form a system of equations:

$$
\begin{aligned}
0 & =a+b(-1)^{2} \\
-1 & =a+b(0)^{2} \\
1 & =a+b(1)^{2} \\
3 & =a+b(2)^{2}
\end{aligned}
$$

The system in matrix-vector form is:

$$
\begin{aligned}
& A \mathbf{x}=\mathbf{b} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1 \\
1 & 4
\end{array}\right] }
\end{aligned} \begin{array}{r}
a \\
{\left[\begin{array}{l}
a
\end{array}\right]}
\end{array}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
3
\end{array}\right] .
$$

The least squares solution is $\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. First, we have:

$$
A^{T} A=\left[\begin{array}{rr}
4 & 6 \\
6 & 18
\end{array}\right],\left(A^{T} A\right)^{-1}=\frac{1}{36}\left[\begin{array}{rr}
18 & -6 \\
-6 & 4
\end{array}\right], A^{T} \mathbf{b}=\left[\begin{array}{r}
3 \\
13
\end{array}\right]
$$

Then we have:

$$
\mathbf{x}=\frac{1}{36}\left[\begin{array}{rr}
18 & -6 \\
-6 & 4
\end{array}\right]\left[\begin{array}{r}
3 \\
13
\end{array}\right]=\frac{1}{36}[-24 / / 34]
$$

Therefore, the function that best fits the data is $y=-\frac{24}{36}+\frac{34}{36} x^{2}=-\frac{2}{3}+\frac{17}{18} x^{2}$.

(b)

