
Math 310 Final Exam Solutions

1. (20 pts) Consider the system of equations Ax = b where:

A =





1 0 −1
0 1 0
1 0 1



 , b =





1
1
1





(a) Compute detA. Is A singular or nonsingular?

(b) Compute A−1, if possible.

(c) Write the row reduced echelon form of A.

(d) Find all solutions to the system Ax = b.

Solution:

(a) detA = 2 ⇒ A is nonsingular

(b) A−1 =





1

2
0 1

2

0 1 0
− 1

2
0 1

2





(c) rref(A) =





1 0 0
0 1 0
0 0 1





(d) x1 = 1, x2 = 1, x3 = 0

2. omitted

3. (20 pts) Consider the following matrix A:

A =

[

1 −1 3
2 1 0

]

(a) Find the nullspace of A.

(b) Do the columns of A form a spanning set for R
2? Clearly explain why or why not.

Solution:

(a) The row reduced echelon form of A is:

rref(A) =

[

1 0 1
0 1 −2

]

There is no pivot in the third column. Therefore, x3 is a free variable. Let x3 = α. Then we have
x1 + x3 = 0 and x2 − 2x3 = 0 which give us x1 = −α and x2 = 2α. The nullspace of A is:

N(A) =











−α

2α

α





∣

∣

∣

∣

∣

∣

α ∈ R







= Span











−1
2
1











(b) The columns of A form a spanning set for R
2 because there is a solution to Ax = b for every

b ∈ R
2 (there are no zero rows in the row reduced echelon form of A).
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4. (20 pts) Do the vectors below form a basis for R
3? If so, explain. If not, remove as many vectors as

you need to form a basis and show that the resulting set of vectors form a basis for R
3.

x1 =





1
1
1



 , x2 =





1
0
1



 , x3 =





0
1
0



 , x4 =





0
0
1



 ,

Solution: The vectors do not form a basis for R
3 because dim R

3 = 3 so there can only be 3 vectors
in any basis for R

3. If we remove x1, then consider the matrix X whose columns are x2, x3, and x4:

X =





1 0 0
0 1 0
1 0 1





Since detX = 1, X is invertible and there is only one solution to Ax = b for every b ∈ R
3. Therefore,

the columns are LI and form a spanning set for R
3. Thus, they form a basis for R

3.

5. (30 pts) Consider the following mapping L : R
2 → R

3:

L(x) =





2x1

−x2

x1 + x2





(a) Show that L is a linear transformation.

(b) Find a matrix representation for L using the standard basis for R
3 and the following basis vectors

for R
2:

u1 =

[

1
0

]

, u2 =

[

1
−1

]

Solution:

(a) Let x =

[

x1

x2

]

and y =

[

y1

y2

]

. Then,

L(x+y) = L

([

x1 + y1

x2 + y2

])

=





2(x1 + y1)
−(x2 + y2)

(x1 + y1) + (x2 + y2)



 =





2x1

−x2

x1 + x2



+





2y1

−y2

y1 + y2



 = L(x)+L(y)

L(αx) = L

([

αx1

αx2

])

=





2αx1

−αx2

αx1 + αx2



 = α





2x1

−x2

x1 + x2



 = αL(x)

(b)

L(u1) = L

([

1
0

])

=





2
0
1





L(u2) = L

([

1
−1

])

=





2
1
0





The matrix representation of L is then:

A =





2 2
0 1
1 0




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6. (15 pts) Let Y = Span {x1,x2} where:

x1 =





1
−1

3



 , x2 =





2
1
0





Find Y ⊥, the orthogonal complement of Y .

Solution: We use the fact that Y ⊥ = R(AT )⊥ = N(A) where AT = [ x1 x2 ]. The matrix A is then
the same as in Problem 3. Since we already found the nullspace of A in Problem 3, the answer is:

Y ⊥ = Span











−1
2
1











7. (15 pts) Use the Gram-Schmidt method to find an orthonormal basis for R
3 from the basis:

x1 =





1
0
0



 , x2 =





1
0
1



 , x3 =





1
1
0





Solution:

u1 =
x1

||x1||
=





1
0
0





p1 = 〈x2,u1〉u1 =





1
0
0





u2 =
x2 − p1

||x2 − p1||
=





0
0
1





p2 = 〈x3,u1〉u1 + 〈x3,u2〉u2 =





1
0
0





u3 =
x3 − p2

||x3 − p2||
=





0
1
0





8. (20 pts) Find a matrix X and a diagonal matrix D such that A = XDX−1 where

A =





1 0 −2
0 3 0

−2 0 1




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Solution: The eigenvalues of A are found as follows:

det(A − λI) = 0
∣

∣

∣

∣

∣

∣

1 − λ 0 −2
0 3 − λ 0
−2 0 1 − λ

∣

∣

∣

∣

∣

∣

= 0

(3 − λ)

∣

∣

∣

∣

1 − λ −2
−2 1 − λ

∣

∣

∣

∣

= 0

(3 − λ)[(1 − λ)2 − (−2)2] = 0

(3 − λ)(1 − 2λ + λ2 − 4) = 0

(3 − λ)(λ2 − 2λ − 3) = 0

(3 − λ)(λ − 3)(λ + 1) = 0

λ = −1, λ = 3 (repeated)

Plugging λ = −1 into (A − λI)x = 0 we get:

(A + I)x = 0




2 0 −2
0 4 0

−2 0 2









x1

x2

x3



 =





0
0
0





The first and third equations tell us x1 − x3 = 0 and the second equation tells us x2 = 0. Since x3 is
a free variable, let x3 = α. Then we have x1 = α. Setting α = 1 we get the eigenvector:

λ1 = −1, x1 =





1
0
1





Plugging λ = 3 into (A − λI)x = 0 we get:

(A − 3I)x = 0




−2 0 −2
0 0 0

−2 0 −2









x1

x2

x3



 =





0
0
0





The first and third equations tell us x1 + x3 = 0 and the second equation tells us 0 = 0. Since both x2

and x3 are free variables, let x2 = α and x3 = β. Then we have x1 = −β. The set of solutions is then:

x = α





0
1
0



 + β





−1
0
1





Letting α = β = 1, we get the eigenvectors:

λ2,3 = 3, x2 =





0
1
0



 , x3 =





−1
0
1





The matrix X has the eigenvectors as its columns and the diagonal matrix D has the corresponding
eigenvalues along the main diagonal:

X =





1 0 −1
0 1 0
1 0 1



 , D =





−1 0 0
0 3 0
0 0 3




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9. (20 pts) Find the solution to the system of first order ODEs:

dy1

dt
= y1 − 4y2, y1(0) = 3

dy2

dt
= −y2, y2(0) = 2

Solution: Writing this system in matrix-vector form we have:

y′ = Ay
[

y′
1

y′
2

]

=

[

1 −4
0 −1

] [

y1

y2

]

Since A is upper triangular, the eigenvalues are on the main diagonal: λ = 1, −1. Plugging λ = 1 into
(A − λI)x = 0 we get:

(A − I)x = 0
[

0 −4
0 −2

] [

x1

x2

]

=

[

0
0

]

Both equations tell us that x2 = 0. However, x1 is free so we let x1 = α. Setting α = 1 we get the
eigenvector:

λ1 = 1, x1 =

[

1
0

]

Plugging λ = −1 into (A − λI)x = 0 we get:

(A + I)x = 0
[

2 −4
0 0

] [

x1

x2

]

=

[

0
0

]

The first equation tells us that x1 − 2x2 = 0. Since x2 is free we let x2 = α, which gives us x1 = 2α.
Setting α = 1 we get the eigenvector:

λ2 = −1, x2 =

[

2
1

]

The general solution to the system is:

y(t) = c1e
λ1tx1 + c2e

λ2tx2

y(t) = c1e
t

[

1
0

]

+ c2e
−t

[

2
1

]

Plugging in the initial conditions we get:

y(0) =

[

3
2

]

= c1

[

1
0

]

+ c2

[

2
1

]

The solution to this system of algebraic equations is c1 = −1 and c2 = 2. Therefore, the solution is:

y(t) = −et

[

1
0

]

+ 2e−t

[

2
1

]

10. (a) (10 pts) Let z =

[

1 + i

1

]

and w =

[

i

2 − i

]

. Compute ||z||, 〈z,w〉, and 〈w, z〉.
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(b) (20 pts) Consider the following matrix:

M =





2 i 0
−i 2 0
0 0 2





Show that M is Hermitian and find a unitary matrix U that diagonalizes M .

Solution:

(a)

||z|| =
√

zHz =

√

[ 1 − i 1 ]

[

1 + i

1

]

=
√

(1 − i)(1 + i) + (1)(1) =
√

1 − i2 + 1 =
√

3

〈z,w〉 = wHz = [ −i 2 + i ]

[

1 + i

1

]

= (−i)(1 + i) + (2 + i)(1) = −i − i2 + 2 + i = 3

〈w, z〉 = 〈z,w〉 = 3

(b) To show that M is Hermitian, we must show that M = MH :

MH = M
T

=





2 −i 0
i 2 0
0 0 2





T

=





2 i 0
−i 2 0
0 0 2



 = M

To find the unitary matrix that diagonalizes M we must find the eigenvalues and eigenvectors for
M . The eigenvalues are found as follows:

det(A − λI) = 0
∣

∣

∣

∣

∣

∣

2 − λ i 0
−i 2 − λ 0
0 0 2 − λ

∣

∣

∣

∣

∣

∣

= 0

(2 − λ)

∣

∣

∣

∣

2 − λ i

−i 2 − λ

∣

∣

∣

∣

= 0

(2 − λ)[(2 − λ)2 − (i)(−i)] = 0

(2 − λ)(4 − 4λ + λ2 − 1) = 0

(2 − λ)(λ2 − 4λ + 3) = 0

(2 − λ)(λ − 1)(λ − 3) = 0

λ = 1, 2, 3

The corresponding eigenvectors are:

λ1 = 1, x1 =





−i

1
0



 ; λ2 = 2, x2 =





0
0
1



 ; λ3 = 3, x3 =





i

1
0





Since M is Hermitian, the eigenvectors are orthogonal. Therefore, in order to construct the
unitary matrix U we simply need to normalize the eigenvectors. The norms of both x1 and x3

are
√

2. Therefore, the unitary matrix is:

U =





− i√
2

0 i√
2

1√
2

0 1√
2

0 1 0




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Bonus: (10 pts) Consider the set S which consists of all cubic polynomials p(t) = a0 + a1t + a2t
2 + a3t

3

that satisfy the equation p′′(0) + 4p(0) = 0. That is,

S = {p(t) | p(t) ∈ P4, p′′(0) + 4p(0) = 0}

(a) Show that S is a subspace of P4.

(b) Find a basis for S.

Solution:

1. (a) p(t) = 0 is certainly in S because it satisfies the condition:

p′′(0) + 4p(0) = 0 + 4(0) = 0

(b) Let p(t), q(t) ∈ S. Therefore, we have:

p′′(0) + 4p(0) = 0

q′′(0) + 4q(0) = 0

Let r(t) = p(t) + q(t). Then we have r′′(t) = p′′(t) + q′′(t) and:

r′′0 + 4r(0) = p′′(0) + q′′(0) + 4(p(0) + q(0))

= p′′(0) + 4p(0) + q′′(0) + 4q(0)

= 0 + 0

r′′0 + 4r(0) = 0

Therefore, r(t) = p(t) + q(t) ∈ S.

(c) Let p(t) ∈ S and α ∈ R. Since p(t) ∈ S we have:

p′′(0) + 4p(0) = 0

Let r(t) = αp(t). Then we have r′′(t) = αp′′(t) and:

r′′0 + 4r(0) = αp′′(0) + 4αp(0)

= α(p′′(0) + 4p(0))

= α(0)

r′′0 + 4r(0) = 0

Therefore, r(t) = αp(t) ∈ S.

Since the above three conditions are satisfied, S is a subspace of P4.

2. Let p(t) = a0 + a1t + a2t
2 + a3t

3. Then p′′(t) = 2a2 + 6a3t. The condition then tells us that:

p′′(0) + 4p(0) = 0

2a2 + 6a3(0) + 4(a0 + a1(0) + a2(0)2 + a3(0)3) = 0

2a2 + 4a0 = 0

a2 = −2a0

Therefore, the set S can be rewritten as follows:

S =
{

a0 + a1t − 2a0t
2 + a3t

3|a0, a1, a3 ∈ R
}

S =
{

a0(1 − 2t2) + a1t + a3t
3|a0, a1, a3 ∈ R

}

S = Span{1 − 2t2, t, t3}

The functions 1 − 2t2, t, t3 are LI and span S. Therefore, they form a basis for S.
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