Math 310 Final Exam Solutions

1. $(20 \mathrm{pts})$ Consider the system of equations $A \mathbf{x}=\mathbf{b}$ where:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Compute $\operatorname{det} A$. Is A singular or nonsingular?
(b) Compute A^{-1}, if possible.
(c) Write the row reduced echelon form of A.
(d) Find all solutions to the system $A \mathbf{x}=\mathbf{b}$.

Solution:

(a) $\operatorname{det} A=2 \Rightarrow A$ is nonsingular
(b) $A^{-1}=\left[\begin{array}{rrr}\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2}\end{array}\right]$
(c) $\operatorname{rref}(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $x_{1}=1, x_{2}=1, x_{3}=0$
2. (10 pts) Consider the following set S :

$$
S=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}^{2}-x_{2}^{2}=0\right\}
$$

Is S a subspace of the vector space \mathbb{R}^{2} ? Clearly explain why or why not.
Solution: S is not a subspace of \mathbb{R}^{2} because it is not closed under addition. Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ be in S. Then we have $x_{1}^{2}-x_{2}^{2}=0$ and $y_{1}^{2}-y_{2}^{2}=0$. The $\operatorname{sum} \mathbf{x}+\mathbf{y}=\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2}\end{array}\right]$ is not in S because:

$$
\left(x_{1}+y_{1}\right)^{2}-\left(x_{2}+y_{2}\right)^{2}=2\left(x_{1} y_{1}-x_{2} y_{2}\right) \neq 0 \text { for all possible } x_{1}, x_{2}, y_{1}, y_{2}
$$

3. (20 pts) Consider the following matrix A :

$$
A=\left[\begin{array}{rrr}
1 & -1 & 3 \\
2 & 1 & 0
\end{array}\right]
$$

(a) Find the nullspace of A.
(b) Do the columns of A form a spanning set for \mathbb{R}^{2} ? Clearly explain why or why not.

Solution:

(a) The row reduced echelon form of A is:

$$
\operatorname{rref}(A)=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

There is no pivot in the third column. Therefore, x_{3} is a free variable. Let $x_{3}=\alpha$. Then we have $x_{1}+x_{3}=0$ and $x_{2}-2 x_{3}=0$ which give us $x_{1}=-\alpha$ and $x_{2}=2 \alpha$. The nullspace of A is:

$$
N(A)=\left\{\left.\left[\begin{array}{r}
-\alpha \\
2 \alpha \\
\alpha
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]\right\}
$$

(b) The columns of A form a spanning set for \mathbb{R}^{2} because there is a solution to $A \mathbf{x}=\mathbf{b}$ for every $\mathbf{b} \in \mathbb{R}^{2}$ (there are no zero rows in the row reduced echelon form of A).
4. (20 pts) Do the vectors below form a basis for \mathbb{R}^{3} ? If so, explain. If not, remove as many vectors as you need to form a basis and show that the resulting set of vectors form a basis for \mathbb{R}^{3}.

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{x}_{4}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Solution: The vectors do not form a basis for \mathbb{R}^{3} because $\operatorname{dim} \mathbb{R}^{3}=3$ so there can only be 3 vectors in any basis for \mathbb{R}^{3}. If we remove \mathbf{x}_{1}, then consider the matrix X whose columns are $\mathbf{x}_{2}, \mathbf{x}_{3}$, and \mathbf{x}_{4} :

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Since $\operatorname{det} X=1, X$ is invertible and there is only one solution to $A \mathbf{x}=\mathbf{b}$ for every $\mathbf{b} \in \mathbb{R}^{3}$. Therefore, the columns are LI and form a spanning set for \mathbb{R}^{3}. Thus, they form a basis for \mathbb{R}^{3}.
5. (30 pts) Consider the following mapping $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$:

$$
L(\mathbf{x})=\left[\begin{array}{c}
2 x_{1} \\
-x_{2} \\
x_{1}+x_{2}
\end{array}\right]
$$

(a) Show that L is a linear transformation.
(b) Find a matrix representation for L using the standard basis for \mathbb{R}^{3} and the following basis vectors for \mathbb{R}^{2} :

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Solution:

(a) Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Then,

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2\left(x_{1}+y_{1}\right) \\
-\left(x_{2}+y_{2}\right) \\
\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} \\
-x_{2} \\
x_{1}+x_{2}
\end{array}\right]+\left[\begin{array}{c}
2 y_{1} \\
-y_{2} \\
y_{1}+y_{2}
\end{array}\right]=L(\mathbf{x})+L(\mathbf{y}) \\
L(\alpha \mathbf{x})=L\left(\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 \alpha x_{1} \\
-\alpha x_{2} \\
\alpha x_{1}+\alpha x_{2}
\end{array}\right]=\alpha\left[\begin{array}{c}
2 x_{1} \\
-x_{2} \\
x_{1}+x_{2}
\end{array}\right]=\alpha L(\mathbf{x})
\end{gathered}
$$

(b)

$$
\begin{aligned}
& L\left(\mathbf{u}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
& L\left(\mathbf{u}_{2}\right)=L\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

The matrix representation of L is then:

$$
A=\left[\begin{array}{ll}
2 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

6. (15 pts) Let $Y=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ where:

$$
\mathbf{x}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Find Y^{\perp}, the orthogonal complement of Y.
Solution: We use the fact that $Y^{\perp}=R\left(A^{T}\right)^{\perp}=N(A)$ where $A^{T}=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]$. The matrix A is then the same as in Problem 3. Since we already found the nullspace of A in Problem 3, the answer is:

$$
Y^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]\right\}
$$

7. (15 pts) Use the Gram-Schmidt method to find an orthonormal basis for \mathbb{R}^{3} from the basis:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Solution:

$$
\begin{gathered}
\mathbf{u}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\mathbf{p}_{1}=\left\langle\mathbf{x}_{2}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\mathbf{u}_{2}=\frac{\mathbf{x}_{2}-\mathbf{p}_{1}}{\left\|\mathbf{x}_{2}-\mathbf{p}_{1}\right\|}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\mathbf{p}_{2}=\left\langle\mathbf{x}_{3}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{x}_{3}, \mathbf{u}_{2}\right\rangle \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\mathbf{u}_{3}=\frac{\mathbf{x}_{3}-\mathbf{p}_{2}}{\left\|\mathbf{x}_{3}-\mathbf{p}_{2}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{gathered}
$$

8. (20 pts) Find a matrix X and a diagonal matrix D such that $A=X D X^{-1}$ where

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 3 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Solution: The eigenvalues of A are found as follows:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{ccc}
1-\lambda & 0 & -2 \\
0 & 3-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right| & =0 \\
(3-\lambda)\left|\begin{array}{cc}
1-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right| & =0 \\
(3-\lambda)\left[(1-\lambda)^{2}-(-2)^{2}\right] & =0 \\
(3-\lambda)\left(1-2 \lambda+\lambda^{2}-4\right) & =0 \\
(3-\lambda)\left(\lambda^{2}-2 \lambda-3\right) & =0 \\
(3-\lambda)(\lambda-3)(\lambda+1) & =0 \\
\lambda=-1, \lambda & =3 \text { (repeated) }
\end{aligned}
$$

Plugging $\lambda=-1$ into $(A-\lambda I) \mathbf{x}=\mathbf{0}$ we get:

$$
\begin{aligned}
(A+I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{rrr}
2 & 0 & -2 \\
0 & 4 & 0 \\
-2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

The first and third equations tell us $x_{1}-x_{3}=0$ and the second equation tells us $x_{2}=0$. Since x_{3} is a free variable, let $x_{3}=\alpha$. Then we have $x_{1}=\alpha$. Setting $\alpha=1$ we get the eigenvector:

$$
\lambda_{1}=-1, \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Plugging $\lambda=3$ into $(A-\lambda I) \mathbf{x}=\mathbf{0}$ we get:

$$
\begin{aligned}
(A-3 I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{rrr}
-2 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

The first and third equations tell us $x_{1}+x_{3}=0$ and the second equation tells us $0=0$. Since both x_{2} and x_{3} are free variables, let $x_{2}=\alpha$ and $x_{3}=\beta$. Then we have $x_{1}=-\beta$. The set of solutions is then:

$$
\mathbf{x}=\alpha\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

Letting $\alpha=\beta=1$, we get the eigenvectors:

$$
\lambda_{2,3}=3, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

The matrix X has the eigenvectors as its columns and the diagonal matrix D has the corresponding eigenvalues along the main diagonal:

$$
X=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], D=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

9. (20 pts) Find the solution to the system of first order ODEs:

$$
\begin{array}{ll}
\frac{d y_{1}}{d t}=y_{1}-4 y_{2}, & y_{1}(0)=3 \\
\frac{d y_{2}}{d t}=-y_{2}, & y_{2}(0)=2
\end{array}
$$

Solution: Writing this system in matrix-vector form we have:

$$
\begin{aligned}
\mathbf{y}^{\prime} & =A \mathbf{y} \\
{\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & -4 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
\end{aligned}
$$

Since A is upper triangular, the eigenvalues are on the main diagonal: $\lambda=1,-1$. Plugging $\lambda=1$ into $(A-\lambda I) \mathbf{x}=\mathbf{0}$ we get:

$$
\begin{aligned}
(A-I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{ll}
0 & -4 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Both equations tell us that $x_{2}=0$. However, x_{1} is free so we let $x_{1}=\alpha$. Setting $\alpha=1$ we get the eigenvector:

$$
\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Plugging $\lambda=-1$ into $(A-\lambda I) \mathbf{x}=\mathbf{0}$ we get:

$$
\begin{aligned}
(A+I) \mathbf{x} & =\mathbf{0} \\
{\left[\begin{array}{rr}
2 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

The first equation tells us that $x_{1}-2 x_{2}=0$. Since x_{2} is free we let $x_{2}=\alpha$, which gives us $x_{1}=2 \alpha$. Setting $\alpha=1$ we get the eigenvector:

$$
\lambda_{2}=-1, \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The general solution to the system is:

$$
\begin{aligned}
& \mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2} \\
& \mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Plugging in the initial conditions we get:

$$
\mathbf{y}(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The solution to this system of algebraic equations is $c_{1}=-1$ and $c_{2}=2$. Therefore, the solution is:

$$
\mathbf{y}(t)=-e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2 e^{-t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

10. (a) (10 pts) Let $\mathbf{z}=\left[\begin{array}{c}1+i \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}i \\ 2-i\end{array}\right]$. Compute $\|\mathbf{z}\|,\langle\mathbf{z}, \mathbf{w}\rangle$, and $\langle\mathbf{w}, \mathbf{z}\rangle$.
(b) (20 pts) Consider the following matrix:

$$
M=\left[\begin{array}{rrr}
2 & i & 0 \\
-i & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Show that M is Hermitian and find a unitary matrix U that diagonalizes M.

Solution:

(a)

$$
\begin{aligned}
&\|\mathbf{z}\|=\sqrt{\mathbf{z}^{H} \mathbf{z}}=\sqrt{\left[\begin{array}{ll}
1-i & 1
\end{array}\right]\left[\begin{array}{c}
1+i \\
1
\end{array}\right]}=\sqrt{(1-i)(1+i)+(1)(1)}=\sqrt{1-i^{2}+1}=\boxed{\sqrt{3}} \\
&\langle\mathbf{z}, \mathbf{w}\rangle=\mathbf{w}^{H} \mathbf{z}=\left[\begin{array}{ll}
-i & 2+i
\end{array}\right]\left[\begin{array}{c}
1+i \\
1
\end{array}\right]=(-i)(1+i)+(2+i)(1)=-i-i^{2}+2+i=3 \\
&\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}=3
\end{aligned}
$$

(b) To show that M is Hermitian, we must show that $M=M^{H}$:

$$
M^{H}=\bar{M}^{T}=\left[\begin{array}{rrr}
2 & -i & 0 \\
i & 2 & 0 \\
0 & 0 & 2
\end{array}\right]^{T}=\left[\begin{array}{rrr}
2 & i & 0 \\
-i & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=M
$$

To find the unitary matrix that diagonalizes M we must find the eigenvalues and eigenvectors for M. The eigenvalues are found as follows:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{ccc}
2-\lambda & i & 0 \\
-i & 2-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right| & =0 \\
(2-\lambda)\left|\begin{array}{cc}
2-\lambda & i \\
-i & 2-\lambda
\end{array}\right| & =0 \\
(2-\lambda)\left[(2-\lambda)^{2}-(i)(-i)\right] & =0 \\
(2-\lambda)\left(4-4 \lambda+\lambda^{2}-1\right) & =0 \\
(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right) & =0 \\
(2-\lambda)(\lambda-1)(\lambda-3) & =0 \\
\lambda & =1,2,3
\end{aligned}
$$

The corresponding eigenvectors are:

$$
\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{r}
-i \\
1 \\
0
\end{array}\right] ; \lambda_{2}=2, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] ; \lambda_{3}=3, \mathbf{x}_{3}=\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right]
$$

Since M is Hermitian, the eigenvectors are orthogonal. Therefore, in order to construct the unitary matrix U we simply need to normalize the eigenvectors. The norms of both \mathbf{x}_{1} and \mathbf{x}_{3} are $\sqrt{2}$. Therefore, the unitary matrix is:

$$
U=\left[\begin{array}{rrr}
-\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]
$$

Bonus: (10 pts) Consider the set S which consists of all cubic polynomials $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$ that satisfy the equation $p^{\prime \prime}(0)+4 p(0)=0$. That is,

$$
S=\left\{p(t) \mid p(t) \in P_{4}, p^{\prime \prime}(0)+4 p(0)=0\right\}
$$

(a) Show that S is a subspace of P_{4}.
(b) Find a basis for S.

Solution:

1. (a) $p(t)=0$ is certainly in S because it satisfies the condition:

$$
p^{\prime \prime}(0)+4 p(0)=0+4(0)=0
$$

(b) Let $p(t), q(t) \in S$. Therefore, we have:

$$
\begin{aligned}
p^{\prime \prime}(0)+4 p(0) & =0 \\
q^{\prime \prime}(0)+4 q(0) & =0
\end{aligned}
$$

Let $r(t)=p(t)+q(t)$. Then we have $r^{\prime \prime}(t)=p^{\prime \prime}(t)+q^{\prime \prime}(t)$ and:

$$
\begin{aligned}
r^{\prime \prime} 0+4 r(0) & =p^{\prime \prime}(0)+q^{\prime \prime}(0)+4(p(0)+q(0)) \\
& =p^{\prime \prime}(0)+4 p(0)+q^{\prime \prime}(0)+4 q(0) \\
& =0+0 \\
r^{\prime \prime} 0+4 r(0) & =0
\end{aligned}
$$

Therefore, $r(t)=p(t)+q(t) \in S$.
(c) Let $p(t) \in S$ and $\alpha \in \mathbb{R}$. Since $p(t) \in S$ we have:

$$
p^{\prime \prime}(0)+4 p(0)=0
$$

Let $r(t)=\alpha p(t)$. Then we have $r^{\prime \prime}(t)=\alpha p^{\prime \prime}(t)$ and:

$$
\begin{aligned}
r^{\prime \prime} 0+4 r(0) & =\alpha p^{\prime \prime}(0)+4 \alpha p(0) \\
& =\alpha\left(p^{\prime \prime}(0)+4 p(0)\right) \\
& =\alpha(0) \\
r^{\prime \prime} 0+4 r(0) & =0
\end{aligned}
$$

Therefore, $r(t)=\alpha p(t) \in S$.
Since the above three conditions are satisfied, S is a subspace of P_{4}.
2. Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$. Then $p^{\prime \prime}(t)=2 a_{2}+6 a_{3} t$. The condition then tells us that:

$$
\begin{aligned}
p^{\prime \prime}(0)+4 p(0) & =0 \\
2 a_{2}+6 a_{3}(0)+4\left(a_{0}+a_{1}(0)+a_{2}(0)^{2}+a_{3}(0)^{3}\right) & =0 \\
2 a_{2}+4 a_{0} & =0 \\
a_{2} & =-2 a_{0}
\end{aligned}
$$

Therefore, the set S can be rewritten as follows:

$$
\begin{aligned}
& S=\left\{a_{0}+a_{1} t-2 a_{0} t^{2}+a_{3} t^{3} \mid a_{0}, a_{1}, a_{3} \in \mathbb{R}\right\} \\
& S=\left\{a_{0}\left(1-2 t^{2}\right)+a_{1} t+a_{3} t^{3} \mid a_{0}, a_{1}, a_{3} \in \mathbb{R}\right\} \\
& S=\operatorname{Span}\left\{1-2 t^{2}, t, t^{3}\right\}
\end{aligned}
$$

The functions $1-2 t^{2}, t, t^{3}$ are LI and span S. Therefore, they form a basis for S.

