Math 310 Homework 10 Solutions

Chapter 5, Section 3

3. (a)

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{rr}
6 & 12 \\
12 & 24
\end{array}\right] \\
& A^{T} \mathbf{b}=\left[\begin{array}{r}
6 \\
12
\end{array}\right]
\end{aligned}
$$

The matrix $A^{T} A$ is not invertible since $\operatorname{det} A^{T} A=0$. However, there is still a least squares solution. In fact, there are infinite least squares solutions here. We find them by solving the system:

$$
\begin{aligned}
A^{T} A \mathbf{x} & =A^{T} \mathbf{b} \\
{\left[\begin{array}{rr}
6 & 12 \\
12 & 24
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{r}
6 \\
12
\end{array}\right]
\end{aligned}
$$

Both equations in the system give us the same equation:

$$
x_{1}+2 x_{2}=1
$$

Let $x_{2}=\alpha$. Then $x_{1}=1-2 x_{2}=1-2 \alpha$. Therefore, the least squares solutions are:

$$
\mathbf{x}=\left[\begin{array}{c}
1-2 \alpha \\
\alpha
\end{array}\right], \quad \alpha \in \mathbb{R}
$$

(b)

$$
\begin{aligned}
& A^{T} A=\left[\begin{array}{rrr}
3 & 0 & 6 \\
0 & 14 & 14 \\
6 & 14 & 26
\end{array}\right] \\
& A^{T} \mathbf{b}
\end{aligned}=\left[\begin{array}{r}
6 \\
14 \\
26
\end{array}\right], ~ l
$$

The matrix $A^{T} A$ is not invertible since $\operatorname{det} A^{T} A=0$. However, there is still a least squares solution. In fact, there are infinite least squares solutions here just as in part (a). We find them by solving the system:

$$
\begin{aligned}
A^{T} A \mathbf{x} & =A^{T} \mathbf{b} \\
{\left[\begin{array}{rrr}
3 & 0 & 6 \\
0 & 14 & 14 \\
6 & 14 & 26
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{r}
6 \\
14 \\
26
\end{array}\right]
\end{aligned}
$$

The row reduced echelon form of the augmented matrix $\left[A^{T} A \mid A^{T} \mathbf{b}\right]$ is:

$$
\left[\begin{array}{lll|l}
1 & 0 & 2 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The third column does not contain a pivot. Therefore, x_{3} is a free variable. Let $x_{3}=\alpha$. Then $x_{2}=1-x_{3}=1-\alpha$ and $x_{1}=2-2 x_{3}=2-2 \alpha$. Therefore, the least squares solutions are:

$$
\mathbf{x}=\left[\begin{array}{c}
2-2 \alpha \\
1-\alpha \\
\alpha
\end{array}\right], \quad \alpha \in \mathbb{R}
$$

5. (a) A linear function is of the form $y=m x+b$. Plugging in the data, we get the following system of equations:

$$
\begin{aligned}
& 0=-1 m+b \\
& 1=0 m+b \\
& 3=1 m+b \\
& 9=2 m+b
\end{aligned}
$$

In matrix-vector format, the system is:

$$
\underbrace{\left[\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
m \\
b
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{c}
0 \\
1 \\
3 \\
9
\end{array}\right]}_{\mathbf{b}}
$$

The least squares solution is:

$$
\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left[\begin{array}{l}
2.9 \\
1.8
\end{array}\right]
$$

The equation of the best fit line is:

$$
y=2.9 x+1.8
$$

(b)

Chapter 5, Section 4

4. (a) $\langle A, B\rangle=(1)(-4)+(2)(1)+(2)(1)+(1)(-3)+(0)(3)+(2)(2)+(3)(1)+(1)(-2)+(1)(-2)=0$
(b) $\|A\|_{F}=\sqrt{1^{2}+2^{2}+2^{2}+1^{2}+0^{2}+2^{2}+3^{2}+1^{2}+1^{2}}=5$
(c) $\|B\|_{F}=\sqrt{(-4)^{2}+1^{2}+1^{2}+(-3)^{2}+3^{2}+2^{2}+1^{2}+(-2)^{2}+(-2)^{2}}=7$
(d) $\|A+B\|_{F}=\sqrt{(-3)^{2}+3^{2}+3^{2}+(-2)^{2}+3^{2}+4^{2}+4^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{74}$
5. (a) $\left\langle e^{x}, e^{-x}\right\rangle=\int_{0}^{1} e^{x} e^{-x} d x=\int_{0}^{1} d x=1$
(b) $\langle x, \sin \pi x\rangle=\int_{0}^{1} x \sin \pi x d x=\left[\frac{\sin \pi x}{\pi^{2}}-\frac{x \cos \pi x}{\pi}\right]_{0}^{1}=\frac{1}{\pi}$
(c) $\left\langle x^{2}, x^{3}\right\rangle=\int_{0}^{1} x^{2} x^{3} d x=\int_{0}^{1} x^{5} d x=\frac{1}{6}$
