Math 310 Homework 12 Solutions

Chapter 6, Section 2

1. (a) The coefficient matrix is:

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-2 & 4
\end{array}\right]
$$

Its eigenvalues and eigenvectors are:

$$
\begin{aligned}
& \lambda=2:\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda=3:\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

The eigenvalues are real and distinct. Therefore, the general solution is:

$$
\mathbf{y}(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(f) The coefficient matrix is:

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 6 \\
0 & 1 & 3
\end{array}\right]
$$

Its eigenvalues and eigenvectors are:

$$
\begin{aligned}
& \lambda=1:\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \lambda=0:\left[\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right] \\
& \lambda=5:\left[\begin{array}{l}
1 \\
8 \\
4
\end{array}\right]
\end{aligned}
$$

The eigenvalues are real and distinct. Therefore, the general solution is:

$$
\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right]+c_{3} e^{5 t}\left[\begin{array}{l}
1 \\
8 \\
4
\end{array}\right]
$$

2. (b) The coefficient matrix is:

$$
A=\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]
$$

Its eigenvalues and eigenvectors are:

$$
\begin{aligned}
& \lambda=1+2 i:\left[\begin{array}{r}
-1 \\
i
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \lambda=1-2 i:\left[\begin{array}{l}
-1 \\
-i
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]-i\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The eigenvalues are complex with $a=1, b=2, \mathbf{u}=\left[\begin{array}{ll}-1 & 0\end{array}\right]^{T}$, and $\mathbf{v}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$. Therefore, the general solution is:

$$
\mathbf{y}(t)=e^{t}\left\{c_{1}\left(\cos 2 t\left[\begin{array}{r}
-1 \\
0
\end{array}\right]-\sin 2 t\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)+c_{2}\left(\cos 2 t\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\sin 2 t\left[\begin{array}{r}
-1 \\
0
\end{array}\right]\right)\right\}
$$

Plugging $t=0$ into the general solution and equating with the initial condition vector $\mathbf{y}(0)=[1-2]^{T}$ we get:

$$
\mathbf{y}(0)=c_{1}\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

The solution to the above system of equations is: $c_{1}=-1$ and $c_{2}=-2$. Therefore, the solution is:

$$
\mathbf{y}(t)=e^{t}\left\{-\left(\cos 2 t\left[\begin{array}{r}
-1 \\
0
\end{array}\right]-\sin 2 t\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)-2\left(\cos 2 t\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\sin 2 t\left[\begin{array}{r}
-1 \\
0
\end{array}\right]\right)\right\}
$$

Chapter 6, Section 3

1. (a) The eigenvalues of A are:

$$
\begin{gathered}
\lambda=-1:\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
\lambda=1:\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

Therefore, the X and D matrices are:

$$
X=\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

(d) The eigenvalues of A are:

$$
\begin{gathered}
\lambda=2:\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\lambda=1:\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right] \\
\lambda=-1:\left[\begin{array}{r}
1 \\
-3 \\
3
\end{array}\right]
\end{gathered}
$$

Therefore, the X and D matrices are:

$$
X=\left[\begin{array}{rrr}
-1 & -2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 3
\end{array}\right], \quad D=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

26. (a) The definition of e^{A} is:

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\ldots
$$

We'll start by computing A^{2} :

$$
A^{2}=A A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

This means that every term of the form A^{k} for $k=2,3,4, \ldots$ will also be the zero matrix. So, the exponential of A is simply:

$$
e^{A}=I+A=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right]
$$

(c) The A^{k} term in the infinite sum will be of the form:

$$
A^{k}=\left[\begin{array}{rrr}
1 & 0 & -k \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The exponential of A is then:

$$
\begin{aligned}
e^{A} & =I+A+\frac{1}{2!} A^{2}+\ldots \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\frac{1}{2!}\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\frac{1}{3!}\left[\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\ldots \\
& =\left[\begin{array}{ccc}
1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots & 0 & -\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots\right) \\
0 & 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots & 0 \\
0 & 0 & 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots
\end{array}\right]
\end{aligned}
$$

To simplify we note that:

$$
\begin{aligned}
e^{x} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots \\
\Rightarrow \quad e^{1} & =1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots
\end{aligned}
$$

Therefore, we have:

$$
e^{A}=\left[\begin{array}{ccc}
e & 0 & -e \\
0 & e & 0 \\
0 & 0 & e
\end{array}\right]
$$

28. (a) The solution is of the form:

$$
\mathbf{y}(t)=X e^{D t} X^{-1} \mathbf{y}_{0}
$$

The eigenvalues and eigenvectors of A are:

$$
\begin{array}{r}
\lambda=1:\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\lambda=-1:\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{array}
$$

Therefore, the X and D matrices are:

$$
X=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

We then have:

$$
X^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad e^{D t}=\left[\begin{array}{rr}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right]
$$

The solution is then:

$$
\begin{aligned}
\mathbf{y}(t) & =X e^{D t} X^{-1} \mathbf{y}_{0} \\
\mathbf{y}(t) & =\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{y}(t) & =\left[\begin{array}{c}
2 e^{t}-e^{-t} \\
e^{-t}
\end{array}\right]
\end{aligned}
$$

