Math 310 Homework 13 Solutions

Chapter 6, Section 4

1. (a) $\mathbf{z}=\left[\begin{array}{c}4+2 i \\ 4 i\end{array}\right], \mathbf{w}=\left[\begin{array}{c}-2 \\ 2+i\end{array}\right]$
i. $\|\mathbf{z}\|=\sqrt{\mathbf{z}^{H} \mathbf{Z}}=\sqrt{|4+2 i|^{2}+|4 i|^{2}}=\sqrt{4^{2}+2^{2}+4^{2}}=6$
ii. $\|\mathbf{w}\|=\sqrt{\mathbf{w}^{H} \mathbf{w}}=\sqrt{|-2|^{2}+|2+i|^{2}}=\sqrt{(-2)^{2}+2^{2}+1^{2}}=3$
iii. $\langle\mathbf{z}, \mathbf{w}\rangle=\mathbf{w}^{H} \mathbf{z}=\left[\begin{array}{ll}-2 & 2-i\end{array}\right]\left[\begin{array}{c}4+2 i \\ 4 i\end{array}\right]=(-2)(4+2 i)+(2-i)(4 i)=-4+4 i$
iv. $\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}=-4-4 i$
2. (a) not Hermitian (one of the diagonal entries is complex); not normal since $M M^{H} \neq M^{H} M$
(c) not Hermitian (real but not symmetric); normal since $M M^{H}=M^{H} M$
(e) not Hermitian $\left(M \neq M^{H}\right)$; normal since $M M^{H}=M^{H} M$
3. (a) The eigenvalues and eigenvectors of the matrix are:

$$
\lambda=1:\left[\begin{array}{c}
-1 \\
1
\end{array}\right] ; \lambda=3:\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The eigenvectors are orthogonal. To make them unit vectors we divide by their norms. The norm of each vector is $\sqrt{2}$. Therefore, the unitary diagonalizing matrix and the diagonal matrix are:

$$
U=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], D=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

(e) The eigenvalues and eigenvectors of the matrix are:

$$
\lambda=1:\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] ; \lambda=-1:\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

The eigenvectors are orthogonal. To make them unit vectors we divide by their norms. Therefore, the unitary diagonalizing matrix and the diagonal matrix are:

$$
U=\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right], D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

