Math 310 Homework 2 Solutions

Chapter 1, Section 3

2. (a) Yes. $\left[\begin{array}{rr}15 & 19 \\ 4 & 0\end{array}\right]$
(b) No.
(c) Yes. $\left[\begin{array}{rr}19 & 21 \\ 17 & 21 \\ 8 & 10\end{array}\right]$
(d) Yes. $\left[\begin{array}{rrr}36 & 10 & 56 \\ 10 & 3 & 16\end{array}\right]$

7b. $(A B)^{T}=B^{T} A^{T}=\left[\begin{array}{rrr}5 & 15 & 0 \\ 14 & 42 & 16\end{array}\right]$
10. $A=A^{2}=A^{3}=\ldots=A^{n}=\left[\begin{array}{rr}\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]$

13a. $\mathbf{b}=2 \mathbf{a}_{1}+\mathbf{a}_{2}$
13c. $\mathbf{c}=-\frac{5}{2} \mathbf{a}_{1}-\frac{1}{4} \mathbf{a}_{2}$
$14 \mathrm{~b} . \mathbf{b}=\mathbf{a}_{1}+\mathbf{a}_{2} \Rightarrow$ the system is consistent. In fact, $x_{1}=1$ and $x_{2}=1$.
14 c. The system is inconsistent. No linear combination of the columns of A will produce the given \mathbf{b}.
24. Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ be an arbitrary 2×2 matrix where $a, b, c \in \mathbb{R}$ but not all zero. Then we have:

$$
A^{2}=A A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]=\left[\begin{array}{ll}
a^{2}+b^{2} & a b+b c \\
a b+b c & b^{2}+c^{2}
\end{array}\right]
$$

In order for A^{2} to be the zero matrix we must have:

$$
\begin{aligned}
& a^{2}+b^{2}=0 \\
& a b+b c=0 \\
& b^{2}+c^{2}=0
\end{aligned}
$$

However, in order for the first and third equation to be satisfied we must have $a=b=c=0$. So, there exist no such a, b, c (not all zero) such that A^{2} is the zero matrix.
26. (a) Since $A \in \mathbb{R}^{m \times n}$ we have $A^{T} \in \mathbb{R}^{n \times m}$. The product $A^{T} A$ can be performed since the number of columns of A^{T} equals the number of rows of A. In fact, $A^{T} A \in \mathbb{R}^{n \times n}$. The product $A A^{T}$ can be performed since the number of columns of A equals the number of rows of A^{T}. In fact, $A A^{T} \in \mathbb{R}^{m \times m}$.
(b) To show that $A^{T} A$ and $A A^{T}$ are symmetric we need to show that $\left(A^{T} A\right)^{T}=A^{T} A$ and $\left(A A^{T}\right)^{T}=$ $A A^{T}$, respectively. This is not too difficult:

$$
\begin{aligned}
& \left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A \\
& \left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
\end{aligned}
$$

In the first step of both computations above, we used the fact that $(A B)^{T}=B^{T} A^{T}$.

