Math 310 Homework 3 Solutions

Chapter 1, Section 4
3. (a) $E=\left[\begin{array}{rr}-2 & 0 \\ 0 & 1\end{array}\right]$, (b) $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, (c) $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]$
6. (a)

$$
\begin{aligned}
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
6 & 4 & 5 \\
4 & 1 & 3
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-3 R_{1}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
4 & 1 & 3
\end{array}\right] & \left\{E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{1}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]\left\{E_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\right\} \\
& \xrightarrow{R_{3} \rightarrow R_{3}+R_{2}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right] \quad\left\{E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right\} \\
& E_{3} E_{2} E_{1} A=U=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{gathered}
E_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], E_{3}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \\
L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]
\end{gathered}
$$

8. (a) $L=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right], U=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$
(b) $L=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right], U=\left[\begin{array}{ll}2 & 4 \\ 0 & 5\end{array}\right]$
(c) $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 4 & 1\end{array}\right], U=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$
(d) $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1\end{array}\right], U=\left[\begin{array}{rrr}-2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2\end{array}\right]$
9. (a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$, (b) $\left[\begin{array}{rr}3 & -5 \\ -1 & 2\end{array}\right]$, (c) $\left[\begin{array}{rr}-4 & 3 \\ \frac{3}{2} & -1\end{array}\right]$, (d) $\left[\begin{array}{rr}\frac{1}{3} & 0 \\ -1 & \frac{1}{3}\end{array}\right]$,
(e) $\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$, (f) $\left[\begin{array}{rrr}3 & 0 & -5 \\ 0 & \frac{1}{3} & 0 \\ -1 & 0 & 2\end{array}\right]$
10. From the given statement, $2 \mathbf{a}_{1}+\mathbf{a}_{2}-4 \mathbf{a}_{3}=\mathbf{0}$, one solution to $A \mathbf{x}=\mathbf{0}$ is $x_{1}=2, x_{2}=1, x_{3}=-4$. We know that either this is the only solution or there are an infinite number of solutions. However, we know that $x_{1}=0, x_{2}=0, x_{3}=0$ is also a solution. Therefore, since we have found more than one solution there must be an infinite number of solutions.
If A were nonsingular, there would only be one solution: $\mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}$. However, there is more than one solution so A must be singular.

Chapter 2, Section 1

3. (a) 1 , (b) 4 , (c) 0 , (d) 58
4.

$$
\begin{aligned}
\left|\begin{array}{rr}
2-\lambda & 4 \\
3 & 3-\lambda
\end{array}\right| & =0 \\
(2-\lambda)(3-\lambda)-(4)(3) & =0 \\
6-5 \lambda+\lambda^{2}-12 & =0 \\
\lambda^{2}-5 \lambda-6 & =0 \\
(\lambda-6)(\lambda+1) & =0 \\
\lambda=6, \lambda & =-1
\end{aligned}
$$

