# Math 310 Homework 4 Solutions 

## Chapter 2, Section 1

4. (a) $\operatorname{det} A=2$ (use $2 \times 2$ rule)
(b) $\operatorname{det} A=-4$ (expand by cofactors of first row)
(c) $\operatorname{det} A=0$ (expand by cofactors of first row)
(d) $\operatorname{det} A=0$ (second column contains all zeros)

## Chapter 2, Section 2

1. (a) $\operatorname{det} A=-24$ (can expand by cofactors of first row or first column)
(b) $\operatorname{det} A=30$ (first replace row 4 with its sum with row 1 to get $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ in row 4 - this does not change the determinant since this is a type III row operation; the resulting matrix is upper triangular so its determinant is the product of the diagonal entries)
(c) $\operatorname{det} A=1$ (expand by cofactors of row $1-M_{14}$ is the identity matrix whose determinant is 1 )
2. (a) $\operatorname{det} A=0 \Rightarrow A$ is singular
(b) $\operatorname{det} A=2 \Rightarrow A$ is nonsingular
(c) $\operatorname{det} A=-3 \Rightarrow A$ is nonsingular
(d) $\operatorname{det} A=2 \Rightarrow A$ is nonsingular
(e) $\operatorname{det} A=0 \Rightarrow A$ is singular
(f) $\operatorname{det} A=0 \Rightarrow A$ is singular
3. The determinant is:

$$
\begin{aligned}
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 9 & c \\
1 & c & 3
\end{array}\right| & =1 \cdot\left|\begin{array}{ll}
9 & c \\
c & 3
\end{array}\right|-1 \cdot\left|\begin{array}{cc}
1 & c \\
1 & 3
\end{array}\right|+1 \cdot\left|\begin{array}{ll}
1 & 9 \\
1 & c
\end{array}\right| \\
& =\left(27-c^{2}\right)-(3-c)+(c-9) \\
& =15+2 c-c^{2}
\end{aligned}
$$

The matrix is singular when the determinant is 0 . Therefore,

$$
\begin{aligned}
15+2 c-c^{2} & =0 \\
c^{2}-2 c-15 & =0 \\
(c-5)(c+3) & =0 \\
c=5, c & =-3
\end{aligned}
$$

12. (a)

$$
\begin{aligned}
&\left|\begin{array}{rrr}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right| \underset{R_{2} \rightarrow R_{2}-R_{1}}{\frac{R_{3} \rightarrow R_{3}-R_{1}}{R_{2}}\left|\begin{array}{rrr}
1 & x_{1} & x_{1}^{2} \\
0 & x_{2}-x_{1} & x_{2}^{2}-x_{1}^{2} \\
0 & x_{3}-x_{1} & x_{3}^{2}-x_{1}^{2}
\end{array}\right|} \\
&=1 \cdot\left|\begin{array}{rr}
x_{2}-x_{1} & x_{2}^{2}-x_{1}^{2} \\
x_{3}-x_{1} & x_{3}^{2}-x_{1}^{2}
\end{array}\right| \\
&=\left(x_{2}-x_{1}\right)\left(x_{3}^{2}-x_{1}^{2}\right)-\left(x_{3}-x_{1}\right)\left(x_{2}^{2}-x_{1}^{2}\right) \\
&=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}+x_{1}\right)-\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right) \\
&=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left[\left(x_{3}+x_{1}\right)-\left(x_{2}+x_{1}\right)\right] \\
&=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
\end{aligned}
$$

(b) The scalars $x_{1}, x_{2}$, and $x_{3}$ must be distinct for the matrix $V$ to be nonsingular.

## Chapter 2, Section 3

1. (a) i. $\operatorname{det} A=-7$
ii. adj $A=\left[\begin{array}{rr}-1 & 2 \\ 3 & -1\end{array}\right]$
iii. $A^{-1}=\frac{1}{-7}\left[\begin{array}{rr}-1 & 2 \\ 3 & -1\end{array}\right]$
(c) i. $\operatorname{det} A=3$
ii. adj $A=\left[\begin{array}{rrr}-3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5\end{array}\right]$
iii. $A^{-1}=\frac{1}{3}\left[\begin{array}{rrr}-3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5\end{array}\right]$
2. (a)

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}=\frac{\left|\begin{array}{rr}
3 & 2 \\
1 & -1
\end{array}\right|}{\left|\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right|}=\frac{-5}{-7}=\frac{5}{7} \\
& x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}=\frac{\left|\begin{array}{rr}
1 & 3 \\
3 & 1
\end{array}\right|}{-7}=\frac{-8}{-7}=\frac{8}{7}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}=\frac{\left|\begin{array}{ll}
2 & 3 \\
5 & 2
\end{array}\right|}{\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right|}=\frac{-11}{-5}=\frac{11}{5} \\
& x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}=\frac{\left|\begin{array}{ll}
2 & 2 \\
3 & 5
\end{array}\right|}{-5}=\frac{4}{-5}=-\frac{4}{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}=\frac{\left|\begin{array}{rrr}
0 & 1 & -3 \\
8 & 5 & 1 \\
2 & -1 & 4
\end{array}\right|}{\left|\begin{array}{rrr}
2 & 1 & -3 \\
4 & 5 & 1 \\
-2 & -1 & 4
\end{array}\right|}=\frac{24}{6}=4 \\
& x_{2}=\frac{\operatorname{det} A_{2}}{\operatorname{det} A}=\frac{\left|\begin{array}{rrr}
2 & 0 & -3 \\
4 & 8 & 1 \\
-2 & 2 & 4
\end{array}\right|}{6}=\frac{-12}{6}=-2 \\
& \left.x_{3}=\frac{\operatorname{det} A_{3}}{\operatorname{det} A}=\frac{\left|\begin{array}{rr}
2 & 1 \\
4 & 5 \\
4 \\
-2 & -1
\end{array}\right|}{6} \right\rvert\,
\end{aligned}
$$

