
Math 310 Homework 4 Solutions

Chapter 2, Section 1

4. (a) detA = 2 (use 2 × 2 rule)

(b) detA = −4 (expand by cofactors of first row)

(c) det A = 0 (expand by cofactors of first row)

(d) detA = 0 (second column contains all zeros)

Chapter 2, Section 2

1. (a) detA = −24 (can expand by cofactors of first row or first column)

(b) detA = 30 (first replace row 4 with its sum with row 1 to get [0 0 0 5] in row 4 - this does
not change the determinant since this is a type III row operation; the resulting matrix is upper
triangular so its determinant is the product of the diagonal entries)

(c) det A = 1 (expand by cofactors of row 1 - M14 is the identity matrix whose determinant is 1)

3. (a) detA = 0 ⇒ A is singular

(b) detA = 2 ⇒ A is nonsingular

(c) det A = −3 ⇒ A is nonsingular

(d) detA = 2 ⇒ A is nonsingular

(e) det A = 0 ⇒ A is singular

(f) detA = 0 ⇒ A is singular

4. The determinant is:
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= (27 − c2) − (3 − c) + (c − 9)

= 15 + 2c − c2

The matrix is singular when the determinant is 0. Therefore,

15 + 2c − c2 = 0

c2
− 2c − 15 = 0

(c − 5)(c + 3) = 0

c = 5, c = −3
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= (x2 − x1)(x3 − x1)(x3 + x1) − (x3 − x1)(x2 − x1)(x2 + x1)

= (x2 − x1)(x3 − x1)[(x3 + x1) − (x2 + x1)]

= (x2 − x1)(x3 − x1)(x3 − x2)



(b) The scalars x1, x2, and x3 must be distinct for the matrix V to be nonsingular.

Chapter 2, Section 3

1. (a) i. detA = −7

ii. adj A =
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(c) i. detA = 3

ii. adj A =
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