Math 310 Homework 5 Solutions

Chapter 3, Section 1

3. For the set of complex numbers C, addition is defined by: $(a+b i)+(c+d i)=(a+c)+(b+d) i$; scalar multiplication is defined by: $\alpha(a+b i)=\alpha a+\alpha b i$. To show that C is a vector space, we must show that the 8 axioms are satisfied.

A1. Let $\mathbf{x}=a+b i$ and $\mathbf{y}=c+d i$. Then

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i \\
& =(c+a)+(d+b) i \\
& =(c+d i)+(a+b i) \\
& =\mathbf{y}+\mathbf{x}
\end{aligned}
$$

A2. Let $\mathbf{x}=a+b i, \mathbf{y}=c+d i$, and $\mathbf{z}=e+f i$. Then:

$$
\begin{aligned}
(\mathbf{x}+\mathbf{y})+\mathbf{z} & =((a+b i)+(c+d i))+(e+f i) \\
& =((a+c)+(b+d) i)+(e+f i) \\
& =(a+c+e)+(b+d+f) i \\
& =(a+b i)+((c+e)+(d+f) i) \\
& =(a+b i)+((c+d i)+(e+f i)) \\
& =\mathbf{x}+(\mathbf{y}+\mathbf{z})
\end{aligned}
$$

A3. Let $\mathbf{x}=a+b i$ and $\mathbf{0}=0+0 i$. Then:

$$
\mathbf{x}+\mathbf{0}=(a+b i)+(0+0 i)=(a+0)+(b+0) i=a+b i=\mathbf{x}
$$

A4. Let $\mathbf{x}=a+b i$ and $-\mathbf{x}=-(a+b i)=-a-b i$. Then:

$$
\mathbf{x}+(-\mathbf{x})=(a+b i)+(-a-b i)=(a-a)+(b-b) i=0+0 i=\mathbf{0}
$$

A5. Let $\mathbf{x}=a+b i, \mathbf{y}=c+d i$, and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
\alpha(\mathbf{x}+\mathbf{y}) & =\alpha((a+b i)+(c+d i)) \\
& =\alpha((a+c)+(b+d) i) \\
& =\alpha(a+c)+\alpha(b+d) i \\
& =\alpha a+\alpha c+\alpha b i+\alpha d i \\
& =\alpha(a+b i)+\alpha(c+d i) \\
& =\alpha \mathbf{x}+\alpha \mathbf{y}
\end{aligned}
$$

A6. Let $\mathbf{x}=a+b i$ and $\alpha, \beta \in \mathbb{R}$. Then:

$$
\begin{aligned}
(\alpha+\beta) \mathbf{x} & =(\alpha+\beta)(a+b i) \\
& =(\alpha+\beta) a+(\alpha+\beta) b i \\
& =\alpha a+\beta a+\alpha b i+\beta b i \\
& =\alpha(a+b i)+\beta(a+b i) \\
& =\alpha \mathbf{x}+\alpha \mathbf{y}
\end{aligned}
$$

A7. Let $\mathbf{x}=a+b i$ and $\alpha, \beta \in \mathbb{R}$. Then:

$$
(\alpha \beta) \mathbf{x}=(\alpha \beta)(a+b i)=\alpha \beta a+\alpha \beta b i=\alpha(\beta a+\beta b i)=\alpha(\beta(a+b i))=\alpha(\beta \mathbf{x})
$$

A8. Let $\mathbf{x}=a+b i$. Then:

$$
1 \cdot \mathbf{x}=1 \cdot(a+b i)=1 \cdot a+1 \cdot b i=a+b i=\mathbf{x}
$$

6. P is the set of all polynomials. Let $p(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}$ and $q(x)=B_{m} x^{m}+$ $B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}$ be any two polynomials of arbitrary degree in P and let $\alpha, \beta \in \mathbb{R}$. Then:
A1.

$$
\begin{aligned}
p(x)+q(x) & =\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)+\left(B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}\right) \\
& =A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}+B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0} \\
& =B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}+A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0} \\
& =\left(B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}\right)+\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right) \\
& =q(x)+p(x)
\end{aligned}
$$

A4. Let $-p(x)=-\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)$. Then:

$$
\begin{aligned}
p(x)+(-p(x)) & =A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}+\left(-\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)\right) \\
& =A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}-A_{n} x^{n}-A_{n-1} x^{n-1}-\ldots-A_{1} x-A_{0} \\
& =\left(A_{n}-A_{n}\right) x^{n}+\left(A_{n-1}-A_{n-1}\right) x^{n-1}+\ldots+\left(A_{1}-A_{1}\right) x+\left(A_{0}-A_{0}\right) \\
& =0
\end{aligned}
$$

A5.

$$
\begin{aligned}
\alpha(p(x)+q(x)) & =\alpha\left[\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)+\left(B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}\right)\right] \\
& =\alpha\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}+B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}\right) \\
& =\alpha A_{n} x^{n}+\alpha A_{n-1} x^{n-1}+\ldots+\alpha A_{1} x+\alpha A_{0}+\alpha B_{m} x^{m}+\alpha B_{m-1} x^{m-1}+\ldots+\alpha B_{1} x+\alpha B_{0} \\
& =\alpha\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)+\alpha\left(B_{m} x^{m}+B_{m-1} x^{m-1}+\ldots+B_{1} x+B_{0}\right) \\
& =\alpha p(x)+\alpha q(x)
\end{aligned}
$$

A6.

$$
\begin{aligned}
(\alpha+\beta) p(x) & =(\alpha+\beta)\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right) \\
& =(\alpha+\beta) A_{n} x^{n}+(\alpha+\beta) A_{n-1} x^{n-1}+\ldots+(\alpha+\beta) A_{1} x+(\alpha+\beta) A_{0} \\
& =\alpha A_{n} x^{n}+\beta A_{n} x^{n}+\alpha A_{n-1} x^{n-1}+\beta A_{n-1} x^{n-1}+\ldots+\alpha A_{1} x+\beta A_{1} x+\alpha A_{0}+\beta A_{0} \\
& =\alpha A_{n} x^{n}+\alpha A_{n-1} x^{n-1}+\ldots+\alpha A_{1} x+\alpha A_{0}+\beta A_{n} x^{n}+\beta A_{n-1} x^{n-1}+\ldots+\beta A_{1} x+\beta A_{0} \\
& =\alpha\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right)+\beta\left(A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}\right) \\
& =\alpha p(x)+\beta p(x)
\end{aligned}
$$

11. $V=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ where

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right) & =\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
\alpha \circ\left(x_{1}, x_{2}\right) & =\left(\alpha x_{1}, x_{2}\right)
\end{aligned}
$$

V satisfies the closure property since both operations above result in an ordered pair. We must now check the axioms. We will see that A6 is violated:

$$
\begin{aligned}
(\alpha+\beta) \circ \mathbf{x} & =(\alpha+\beta) \circ\left(x_{1}, x_{2}\right) \\
& =\left((\alpha+\beta) x_{1}, x_{2}\right) \\
& =\left(\alpha x_{1}+\beta x_{1}, x_{2}\right)
\end{aligned}
$$

However,

$$
\begin{aligned}
\alpha \circ \mathbf{x}+\beta \circ \mathbf{x} & =\alpha \circ\left(x_{1}, x_{2}\right)+\beta \circ\left(x_{1}, x_{2}\right) \\
& =\left(\alpha x_{1}, x_{2}\right)+\left(\beta x_{1}, x_{2}\right) \\
& =\left(\alpha x_{1}+\beta x_{1}, 2 x_{2}\right)
\end{aligned}
$$

Therefore, $(\alpha+\beta) \circ \mathbf{x} \neq \alpha \circ \mathbf{x}+\beta \circ \mathbf{x}$ so V is not a vector space.

Chapter 3, Section 2

1. For each of these, we must check the three conditions for a set being a subspace of a vector space V.
(a) i. $\mathbf{0} \in S$ since the condition $x_{1}+x_{2}=0$ is satisfied when $x_{1}=x_{2}=0$
ii. Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in S$ and $\alpha \in \mathbb{R}$. Then:

$$
\mathbf{y}=\alpha \mathbf{x}=\alpha\left(x_{1}, x_{2}\right)=\alpha\left(x_{1},-x_{1}\right)=\left(\alpha x_{1},-\alpha x_{1}\right)=\left(y_{1}, y_{2}\right)
$$

Since $y_{1}+y_{2}=\alpha x_{1}+\left(-\alpha x_{1}\right)=0, \alpha \mathbf{x} \in \mathbb{R}$.
iii. Let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in S$. Then:

$$
\mathbf{z}=\mathbf{x}+\mathbf{y}=\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1},-x_{1}\right)+\left(y_{1},-y_{1}\right)=\left(x_{1}+y_{1},-x_{1}-y_{1}\right)=\left(z_{1}, z_{2}\right)
$$

Since $z_{1}+z_{2}=\left(x_{1}+y_{1}\right)+\left(-x_{1}-y_{1}\right)=0, \mathbf{x}+\mathbf{y} \in \mathbb{R}$.
Therefore, S is a subspace of \mathbb{R}^{2}.
(b) i. $\mathbf{0} \in S$ since the condition $x_{1} x_{2}=0$ is satisfied when $x_{1}=x_{2}=0$
ii. Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in S$ and $\alpha \in \mathbb{R}$. Then:

$$
\mathbf{y}=\alpha \mathbf{x}=\alpha\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, \alpha x_{2}\right)=\left(y_{1}, y_{2}\right)
$$

Since $y_{1} y_{2}=\left(\alpha x_{1}\right)\left(\alpha x_{2}\right)=\alpha^{2} x_{1} x_{2}=\alpha^{2}(0)=0, \alpha \mathbf{x} \in \mathbb{R}$.
iii. Let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \in S$. Then:

$$
\mathbf{z}=\mathbf{x}+\mathbf{y}=\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(z_{1}, z_{2}\right)
$$

Since $z_{1} z_{2}=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+x_{1} y_{2}+x_{2} y_{1}=0+0+x_{1} y_{2}+x_{2} y_{1}=$ $x_{1} y_{2}+x_{2} y_{1} \neq 0$, in general. Therefore, in general, $\mathbf{x}+\mathbf{y} \notin \mathbb{R}$.
Therefore, S is not a subspace of \mathbb{R}^{2}.
2. (a) i. $\mathbf{0} \notin S$ since the condition $x_{1}+x_{3}=1$ is not satisfied when $x_{1}=x_{2}=x_{3}=0$

Therefore, S is not a subspace of \mathbb{R}^{3}.
(b) i. $\mathbf{0} \in S$ since the condition $x_{1}=x_{2}=x_{3}$ is satisfied when $x_{1}=x_{2}=x_{3}=0$
ii. Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in S$ and $\alpha \in \mathbb{R}$. Then:

$$
\mathbf{y}=\alpha \mathbf{x}=\alpha\left(x_{1}, x_{2}, x_{3}\right)=\alpha\left(x_{1}, x_{1}, x_{1}\right)=\left(\alpha x_{1}, \alpha x_{1}, \alpha x_{1}\right)=\left(y_{1}, y_{2}, y_{3}\right)
$$

Since $y_{1}=y_{2}=y_{3}, \alpha \mathbf{x} \in \mathbb{R}$.
iii. Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \in S$. Then:

$$
\mathbf{z}=\mathbf{x}+\mathbf{y}=\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}, x_{1}, x_{1}\right)+\left(y_{1}, y_{1}, y_{1}\right)=\left(x_{1}+y_{1}, x_{1}+y_{1}, x_{1}+y_{1}\right)=\left(z_{1}, z_{2}, z_{3}\right)
$$

Since $z_{1}=z_{2}=z_{3}, \mathbf{x}+\mathbf{y} \in \mathbb{R}$.
Therefore, S is a subspace of \mathbb{R}^{3}.
4. (a) The determinant is 1 . Therefore, the matrix is invertible and $\mathbf{x}=\mathbf{0}$ is the only solution to $A \mathbf{x}=\mathbf{0}$.

The nullspace of A is:

$$
N(A)=\{\mathbf{0}\}
$$

(b) $[A \mid \mathbf{0}]=\left[\begin{array}{rrrr|r}1 & 2 & -3 & -1 & 0 \\ -2 & -4 & 6 & 3 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}1 & 2 & -3 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}1 & 2 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

Since columns 2 and 3 do not contain pivots, x_{2} and x_{3} are free variables. Let $x_{2}=\alpha$ and $x_{3}=\beta$. The second row of the row reduced matrix tells us that $x_{4}=0$. The first row tells us that:

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =0 \\
x_{1} & =-2 x_{2}+3 x_{3} \\
x_{1} & =-2 \alpha+3 \beta
\end{aligned}
$$

Therefore, the solutions to $A \mathbf{x}=\mathbf{0}$ are:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 \alpha+3 \beta \\
\alpha \\
\beta \\
0
\end{array}\right]=\alpha\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right]
$$

The nullspace of A is:

$$
N(A)=\left\{\left.\alpha\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

(c) The row reduced echelon form of $[A \mid 0]$ is:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Column 3 does not contain a pivot. Therefore, x_{3} is a free variable. Let $x_{3}=\alpha$. The row reduced matrix tells us that:

$$
\begin{aligned}
& x_{1}-x_{3}=0 \quad \Rightarrow \quad x_{1}=x_{3}=\alpha \\
& x_{2}-x_{3}=0 \quad \Rightarrow \quad x_{2}=x_{3}=\alpha
\end{aligned}
$$

Therefore, the solutions to $A \mathbf{x}=\mathbf{0}$ are:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\alpha \\
\alpha
\end{array}\right]=\alpha\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The nullspace of A is:

$$
N(A)=\left\{\left.\alpha\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

(d) The row reduced echelon form of $[A \mid \mathbf{0}]$ is:

$$
\left[\begin{array}{llll|l}
1 & 1 & 0 & 5 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Columns 2 and 4 do not contain a pivot. Therefore, x_{2} and x_{4} are free variables. Let $x_{2}=\alpha$ and $x_{4}=\beta$. The row reduced matrix tells us that:

$$
\begin{aligned}
x_{1}+x_{2}+5 x_{4}=0 & \Rightarrow \quad x_{1}=-x_{2}-5 x_{4}=-\alpha-5 \beta \\
x_{3}+3 x_{4}=0 & \Rightarrow \quad x_{3}=-3 x_{4}=-3 \beta
\end{aligned}
$$

Therefore, the solutions to $A \mathrm{x}=\mathbf{0}$ are:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-\alpha-5 \beta \\
\alpha \\
-3 \beta \\
\beta
\end{array}\right]=\alpha\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{r}
-5 \\
0 \\
-3 \\
1
\end{array}\right]
$$

The nullspace of A is:

$$
N(A)=\left\{\left.\alpha\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{r}
-5 \\
0 \\
-3 \\
1
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

5. (a) The set of polynomials in P_{4} of even degree is not a subspace of P_{4} because it is not closed under addition. For example, let $p(x)=x^{2}+x+1$ and $q(x)=-x^{2}$. Then $p(x)+q(x)=x+1$ which has odd degree and, thus, is not in the set.
(b) The set of all polynomials of degree 3 is not a subspace of P_{4} because it is not closed under addition. For example, let $p(x)=x^{3}+1$ and $q(x)=-x^{3}$. Then $p(x)+q(x)=1$ which is not a polynomial of degree 3 and, thus, is not in the set.
(c) The set of all polynomials $p(x)$ in P_{4} such that $p(0)=0$ is $S=\left\{a x^{3}+b x^{2}+c x \mid a, b, c \in \mathbb{R}\right\}$. Let's check the three conditions for a subspace:
i. $p(x)=0 \in S$ since a, b, and c can all be 0
ii. Let $p(x)=a x^{3}+b x^{2}+c x \in S$ and $\alpha \in \mathbb{R}$. Then:

$$
q(x)=\alpha p(x)=\alpha\left(a x^{3}+b x^{2}+c x\right)=\alpha a x^{3}+\alpha b x+\alpha c x
$$

$q(x) \in S$ since it has degree less than 4 and $q(0)=0$.
iii. Let $p(x)=a x^{3}+b x^{2}+c x, q(x)=d x^{3}+e x^{2}+f x \in S$. Then:

$$
r(x)=p(x)+q(x)=a x^{3}+b x^{2}+c x+d x^{3}+e x^{2}+f x=(a+d) x^{3}+(b+e) x^{2}+(c+f) x
$$

$r(x) \in S$ since it has degree less than 4 and $r(0)=0$.
Therefore, S is a subspace of P_{4}.
10. (a) Let's construct a matrix A whose columns are the vectors in the given set:

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

The row reduced echelon form of A is:

$$
\operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since each row contains a pivot, the system of equations $A \mathbf{x}=\mathbf{b}$ has a unique solution for every vector $\mathbf{b} \in \mathbb{R}^{3}$. This means that \mathbf{b} can be written as a linear combination of the columns of A :

$$
\mathbf{b}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}
$$

where $\mathbf{x}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}$. Thus, $\left\{(1,0,0)^{T},(0,1,1)^{T},(1,0,1)^{T}\right\}$ is a spanning set for \mathbb{R}^{3}.
(b) The given set of vectors includes the three vectors in part (a) and an additional vector $(1,2,3)^{T}$. Because a subset of this set is a spanning set for \mathbb{R}^{3} as shown in part (a), the given set is also a spanning set for \mathbb{R}^{3}. That is, we can take any vector $\mathbf{b} \in \mathbb{R}^{3}$ and write it as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ as follows:

$$
\mathbf{b}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}
$$

where we will always choose $\alpha_{4}=0$.
(c) As in part (a), we construct a matrix A whose columns are the vectors in the given set:

$$
A=\left[\begin{array}{rrr}
2 & 3 & 2 \\
1 & 2 & 2 \\
-2 & -2 & 0
\end{array}\right]
$$

$\operatorname{det} A=0$. In fact, the row reduced echelon form of A is:

$$
\operatorname{rref}(A)=\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

The last row contains all zeros. In order for the system $A \mathbf{x}=\mathbf{b}$ to be consistent, there must be a 0 in the last row of the last column of the row echelon form of $[A \mid \mathbf{b}]$. This will not occur for every $\mathbf{b} \in \mathbb{R}$. Therefore, we cannot guarantee that we can select a set of scalars $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ such that \mathbf{b} is a linear combination of the given set of vectors. Thus, the given set is not a spanning set for \mathbb{R}^{3}.
14. (a) For every $p(x) \in P_{3}$, can we select a set of scalars $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ such that $p(x)=\alpha_{1}(1)+\alpha_{2}\left(x^{2}\right)+$ $\alpha_{3}\left(x^{2}-2\right)$? Let $p(x)=a x^{2}+b x+c$ where a, b, c can take on any value. Then:

$$
\begin{aligned}
p(x)=a x^{2}+b x+c & =\alpha_{1}(1)+\alpha_{2}\left(x^{2}\right)+\alpha_{3}\left(x^{2}-2\right) \\
a x^{2}+b x+c & =\left(\alpha_{2}+\alpha_{3}\right) x^{2}+(0) x+\left(\alpha_{1}-2 \alpha_{3}\right)
\end{aligned}
$$

If the above equation holds, we must then have:

$$
\begin{aligned}
\alpha_{2}+\alpha_{3} & =a \\
0 & =b \\
\alpha_{1}-2 \alpha_{3} & =c
\end{aligned}
$$

The second equation above says that b must be 0 but we said that b can take on any value. Therefore, the given set is not a spanning set for P_{3}.
(b) Following the argument in part (a), we have:

$$
\begin{aligned}
p(x)=a x^{2}+b x+c & =\alpha_{1}(2)+\alpha_{2}\left(x^{2}\right)+\alpha_{3}(x)+\alpha_{4}(2 x+3) \\
a x^{2}+b x+c & =\left(\alpha_{2}\right) x^{2}+\left(\alpha_{3}+2 \alpha_{4}\right) x+\left(2 \alpha_{1}+3 \alpha_{4}\right)
\end{aligned}
$$

If the above equation holds, we must then have:

$$
\begin{aligned}
\alpha_{2} & =a \\
\alpha_{3}+2 \alpha_{4} & =b \\
2 \alpha_{1}+3 \alpha_{4} & =c
\end{aligned}
$$

If we let $\alpha_{4}=\alpha$ where $\alpha \in \mathbb{R}$ then we have:

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)^{T}=\left(-\frac{3}{2} \alpha, a, b-2 \alpha, \alpha\right)^{T}
$$

Therefore, the given set is a spanning set for P_{3}.
(c) Following the argument in part (a), we have:

$$
\begin{aligned}
p(x)=a x^{2}+b x+c & =\alpha_{1}(x+2)+\alpha_{2}(x+1)+\alpha_{3}\left(x^{2}-1\right) \\
a x^{2}+b x+c & =\left(\alpha_{3}\right) x^{2}+\left(\alpha_{1}+\alpha_{2}\right) x+\left(2 \alpha_{1}+\alpha_{2}-\alpha_{3}\right)
\end{aligned}
$$

If the above equation holds, we must then have:

$$
\begin{aligned}
\alpha_{3} & =a \\
\alpha_{1}+\alpha_{2} & =b \\
2 \alpha_{1}+\alpha_{2}+\alpha_{3} & =c
\end{aligned}
$$

The following is a solution to the above system of equations:

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}=(a-b+c,-a+2 b-c, a)^{T}
$$

Therefore, the given set is a spanning set for P_{3}.

